• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4613486)   Today's Articles (1007)   Subscriber (49386)
For: Uhm S, Chung ST, Lee J. Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell. Electrochem commun 2007. [DOI: 10.1016/j.elecom.2007.05.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]  Open
Number Cited by Other Article(s)
1
Safdar Hossain SK, Saleem J, Mudassir Ahmad Alwi M, Al-Odail FA, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. CHEM REC 2022;22:e202200045. [PMID: 35733082 DOI: 10.1002/tcr.202200045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Indexed: 11/11/2022]
2
Pentyala P, Deshpande PA. Insights into Pathway Selectivity during Anodic Formic Acid Oxidation over La1–xSrxCoO3. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
3
Chandra Sekhar Y, Raghavendra P, Thulasiramaiah G, Sravani B, Sri Chandana P, Maiyalagan T, Sarma LS. Reduced graphene oxide (RGO)-supported Pd–CeO2 nanocomposites as highly active electrocatalysts for facile formic acid oxidation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05603d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
4
Huang L, Liu M, Lin H, Xu Y, Wu J, Dravid VP, Wolverton C, Mirkin CA. Shape regulation of high-index facet nanoparticles by dealloying. Science 2020;365:1159-1163. [PMID: 31515391 DOI: 10.1126/science.aax5843] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/13/2019] [Indexed: 11/02/2022]
5
Shen WJ, Sang JL, Cai L, Li YJ. Composition-Controllable AuPt Alloy Catalysts for Electrooxidation of Formic Acid. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193518110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
6
Ulas B, Caglar A, Sahin O, Kivrak H. Composition dependent activity of PdAgNi alloy catalysts for formic acid electrooxidation. J Colloid Interface Sci 2018;532:47-57. [PMID: 30077066 DOI: 10.1016/j.jcis.2018.07.120] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 11/25/2022]
7
Fedorczyk A, Pomorski R, Chmielewski M, Ratajczak J, Kaszkur Z, Skompska M. Bimetallic Au@Pt nanoparticles dispersed in conducting polymer—A catalyst of enhanced activity towards formic acid electrooxidation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
8
Song H, Luo M, Qiu X, Cao G. Insights into the endurance promotion of PtSn/CNT catalysts by thermal annealing for ethanol electro-oxidation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
9
Busó-Rogero C, Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM. Adatom modified shape-controlled platinum nanoparticles towards ethanol oxidation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
10
Qu X, Cao Z, Zhang B, Tian X, Zhu F, Zhang Z, Jiang Y, Sun S. One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem Commun (Camb) 2016;52:4493-6. [DOI: 10.1039/c6cc00184j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Gong M, Li F, Yao Z, Zhang S, Dong J, Chen Y, Tang Y. Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation. NANOSCALE 2015;7:4894-4899. [PMID: 25706304 DOI: 10.1039/c4nr07375d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
12
Qi Y, Gao J, Zhang D, Liu C. Comparative theoretical study of formic acid decomposition on PtAg(111) and Pt(111) surfaces. RSC Adv 2015. [DOI: 10.1039/c5ra01925g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
13
Qi Y, Li J, Zhang D, Liu C. Reexamination of formic acid decomposition on the Pt(111) surface both in the absence and in the presence of water, from periodic DFT calculations. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00159e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Armutlulu A, Bottomley LA, Bidstrup Allen SA, Allen MG. Supercapacitor Electrodes Based on Three-Dimensional Copper Structures with Precisely Controlled Dimensions. ChemElectroChem 2014. [DOI: 10.1002/celc.201402333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
15
Tian L, Yuan B, Li H, Dong Z, Zhang Z, Zhou X. Insights into the promotion effect of macrocycle molecule on HCOOH electro-oxidation. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Self-adsorption of an Ultrathin Bismuth Layer in the Size of Ions on an Au Surface. Electrocatalysis (N Y) 2014. [DOI: 10.1007/s12678-014-0235-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
17
Cai J, Huang Y, Guo Y. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.059] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
18
Shim J, Lee J, Ye Y, Hwang J, Kim SK, Lim TH, Wiesner U, Lee J. One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation. ACS NANO 2012;6:6870-81. [PMID: 22800174 DOI: 10.1021/nn301692y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
19
Xia Y, Liu J, Huang W, Li Z. Electrochemical fabrication of clean dendritic Au supported Pt clusters for electrocatalytic oxidation of formic acid. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
20
Yang L, Su H, Shu T, Liao S. Enhanced electro-oxidation of formic acid by a PdPt bimetallic catalyst on a CeO2-modified carbon support. Sci China Chem 2012. [DOI: 10.1007/s11426-011-4485-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
21
Huang Y, Zheng S, Lin X, Su L, Guo Y. Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.12.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
22
Huang M, Henry JB, Fortgang P, Henig J, Plumeré N, Bandarenka AS. In depth analysis of complex interfacial processes: in situ electrochemical characterization of deposition of atomic layers of Cu, Pb and Te on Pd electrodes. RSC Adv 2012. [DOI: 10.1039/c2ra21558f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
23
Al-Akraa IM, Mohammad AM, El-Deab MS, El-Anadouli BE. Electrooxidation of Formic Acid at Platinum–Gold Nanoparticle-modified Electrodes. CHEM LETT 2011. [DOI: 10.1246/cl.2011.1374] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
24
Bi X, Wang R, Ding Y. Boosting the performance of Pt electro-catalysts toward formic acid electro-oxidation by depositing sub-monolayer Au clusters. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.08.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
25
Jiang Q, Jiang L, Qi J, Wang S, Sun G. Experimental and density functional theory studies on PtPb/C bimetallic electrocatalysts for methanol electrooxidation reaction in alkaline media. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.04.135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
26
Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1398-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
27
Carbon supported PtBi catalysts for direct formic acid fuel cells. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
Screening of PdM and PtM catalysts in a multi-anode direct formic acid fuel cell. J APPL ELECTROCHEM 2011. [DOI: 10.1007/s10800-011-0267-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
29
Kim S, Han J, Kwon Y, Lee KS, Lim TH, Nam SW, Jang JH. Effect of Nafion ionomer and catalyst in cathode layers for the direct formic acid fuel cell with complex capacitance analysis on the ionic resistance. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
30
Meng H, Xie F, Chen J, Shen PK. Electrodeposited palladium nanostructure as novel anode for direct formic acid fuel cell. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10361j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Wang XM, Wang ME, Zhou DD, Xia YY. Structural design and facile synthesis of a highly efficient catalyst for formic acid electrooxidation. Phys Chem Chem Phys 2011;13:13594-7. [DOI: 10.1039/c1cp21680e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Jeon H, Uhm S, Jeong B, Lee J. On the origin of reactive Pd catalysts for an electrooxidation of formic acid. Phys Chem Chem Phys 2011;13:6192-6. [DOI: 10.1039/c0cp02863k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Wang S, Yang F, Jiang SP, Chen S, Wang X. Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2010.09.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]  Open
34
Yu X, Pickup PG. Pb and Sb modified Pt/C catalysts for direct formic acid fuel cells. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
35
Uhm SH, Jeon HR, Lee JY. Electrocatalytic Oxidation of HCOOH on an Electrodeposited AuPt Electrode: its Possible Application in Fuel Cells. J ELECTROCHEM SCI TE 2010. [DOI: 10.5229/jecst.2010.1.1.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
36
Choi SJ, Park SM. Electrochemistry of Conductive Polymers 46. Polymer Films as Overcharge Inhibitors for Lithium-Ion Rechargeable Batteries. J ELECTROCHEM SCI TE 2010. [DOI: 10.5229/jecst.2010.1.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
37
High efficient electrocatalytic oxidation of formic acid on Pt/polyindoles composite catalysts. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.01.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
38
Haan JL, Stafford KM, Morgan RD, Masel RI. Performance of the direct formic acid fuel cell with electrochemically modified palladium–antimony anode catalyst. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
39
Effects of iron-tetrasulfophthalocyanine on the catalytic activities of Pt/C, PtRu/C, and Pd/C catalysts in a multi-anode direct formic acid fuel cell. J APPL ELECTROCHEM 2010. [DOI: 10.1007/s10800-009-0063-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
40
Electrocatalysis by nanoparticles: Oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays. J Adv Res 2010. [DOI: 10.1016/j.jare.2010.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]  Open
41
Chen DJ, Zhou ZY, Wang Q, Xiang DM, Tian N, Sun SG. A non-intermetallic PtPb/C catalyst of hollow structure with high activity and stability for electrooxidation of formic acid. Chem Commun (Camb) 2010;46:4252-4. [DOI: 10.1039/c002964e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Historical Overview and Fundamental Aspects of Molecular Catalysts for Energy Conversion. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-3-540-70758-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
43
Uhm S, Lee HJ, Lee J. Understanding underlying processes in formic acid fuel cells. Phys Chem Chem Phys 2009;11:9326-36. [DOI: 10.1039/b909525j] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
44
Uhm S, Lee H, Kwon Y, Lee J. A Stable and Cost-Effective Anode Catalyst Structure for Formic Acid Fuel Cells. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803466] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
45
Uhm S, Lee H, Kwon Y, Lee J. A Stable and Cost-Effective Anode Catalyst Structure for Formic Acid Fuel Cells. Angew Chem Int Ed Engl 2008;47:10163-6. [DOI: 10.1002/anie.200803466] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
46
Wang S, Wang X, Jiang SP. Controllable self-assembly of Pd nanowire networks as highly active electrocatalysts for direct formic acid fuel cells. NANOTECHNOLOGY 2008;19:455602. [PMID: 21832779 DOI: 10.1088/0957-4484/19/45/455602] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
47
Coutanceau C, Brimaud S, Lamy C, Léger JM, Dubau L, Rousseau S, Vigier F. Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2007.12.043] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
48
Lee JK, Jeon H, Uhm S, Lee J. Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.02.089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
49
Uhm S, Lee JK, Chung ST, Lee J. Effect of anode diffusion media on direct formic acid fuel cells. J IND ENG CHEM 2008. [DOI: 10.1016/j.jiec.2008.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
50
Uhm S, Kwon Y, Chung ST, Lee J. Highly effective anode structure in a direct formic acid fuel cell. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.02.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA