1
|
Abd-Elsabour M, Alsoghier HM, Alhamzani AG, Abou-Krisha MM, Yousef TA, Assaf HF. A Novel Electrochemical Sensor for Detection of Nicotine in Tobacco Products Based on Graphene Oxide Nanosheets Conjugated with (1,2-Naphthoquinone-4-Sulphonic Acid) Modified Glassy Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2354. [PMID: 35889578 PMCID: PMC9323772 DOI: 10.3390/nano12142354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
A simple electrochemical sensor for nicotine (NIC) detection was performed. The sensor based on a glassy carbon electrode (GCE) was modified by (1,2-naphthoquinone-4-sulphonic acid)(Nq) decorated by graphene oxide (GO) nanocomposite. The synthesized (GO) nanosheets were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), FT-IR, and UV-Visible Spectroscopy. The insertion of Nq with GO nanosheets on the surface of GCE displayed high electrocatalytic activity towards NIC compared to the bare GCE. NIC determination was performed under the optimum conditions using 0.10 M of Na2SO4 as a supporting electrolyte with pH 8.0 at a scan rate of 100 mV/s using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This electrochemical sensor showed an excellent result for NIC detection. The oxidation peak current increased linearly with a 6.5-245 µM of NIC with R2 = 0.9999. The limit of detection was 12.7 nM. The fabricated electrode provided satisfactory stability, reproducibility, and selectivity for NIC oxidation. The reliable GO/Nq/GCE sensor was successfully applied for detecting NIC in the tobacco product and a urine sample.
Collapse
Affiliation(s)
- M. Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| | - Hesham M. Alsoghier
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
| | - Tarek A. Yousef
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
- Mansoura Laboratory, Department of Toxic and Narcotic Drug, Forensic Medicine, Medicolegal Organization, Ministry of Justice, Mansoura 35511, Egypt
| | - Hytham F. Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| |
Collapse
|
2
|
A novel electrochemical sensor based on Fe-doped MgNi2O3 nanoparticles for simultaneous determination of dopamine, uric acid, nicotine and caffeine over very wide linear ranges. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
3
|
Acar ET, Atun G. Sensitive Determination of Nicotine on PolyNiTSPc Electrodeposited Glassy Carbon Electrode: Investigation of Reaction Mechanism. ELECTROANAL 2018. [DOI: 10.1002/elan.201800303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Elif Turker Acar
- Department of ChemistryFaculty of EngineeringIstanbul University, Cerrahpasa 34320 Avcılar-Istanbul Turkey
| | - Gulten Atun
- Department of ChemistryFaculty of EngineeringIstanbul University, Cerrahpasa 34320 Avcılar-Istanbul Turkey
| |
Collapse
|
4
|
Tassew Z, Chandravanshi BS. Levels of nicotine in Ethiopian tobacco leaves. SPRINGERPLUS 2015; 4:649. [PMID: 26543783 PMCID: PMC4628019 DOI: 10.1186/s40064-015-1448-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022]
Abstract
Tobacco is a valuable cash crop. It is the most widely grown non-food crop in the world. Tobacco use is widespread due to its addictive nature of its main constituent nicotine. Therefore, the knowledge of nicotine level in tobacco is important to tobacco industry and in the area of toxicology to control its harmful effect on health. There is no report in the literature on nicotine level of Ethiopian raw (unprocessed) tobacco leaves. Hence, the objective of this study is to determine the levels of nicotine in the Ethiopian tobacco leaves. Samples were collected based on their leaves positions, species and place of cultivation from different regions of Ethiopia. These were Virginia type tobacco from Shewa Robit and Billate, Burley and Oriental types of tobacco from Awassa and native tobacco used as pipe smoking (Gaya) from Wollayita. The level of nicotine in four different varieties of Ethiopian tobacco leaves was determined using high performance liquid chromatography. The level of nicotine in the four different varieties of Ethiopian tobacco were Virginia tobacco (3.26 %), the native tobacco ‘Gaya’ (1.10 %), Burley tobacco (0.650 %), and Oriental tobacco leaves (≤0.0500 %). It was found that the nicotine level of Ethiopian Virginia tobacco leaves increases from bottom to top leaf (stalk) positions of the tobacco plant. It was also found that the nicotine level of Ethiopian tobacco leaves varies in different species and the nicotine level of the same tobacco species differ in different area of cultivation. In general, the level of nicotine in Ethiopian tobacco is comparable with that in the rest of the world.
Collapse
Affiliation(s)
- Zebasil Tassew
- Quality Control Department, Ethiopian Pharmaceuticals Manufacturing Sh. Co. (Epharm), P.O. Box 2457, Addis Ababa, Ethiopia ; Department of Chemistry, Bahir Dar University, P.O. Box 79 Bahir Dar, Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Highly Selective Electrochemical Determination of Taxol Based on ds-DNA-Modified Pencil Electrode. Appl Biochem Biotechnol 2015; 176:344-58. [DOI: 10.1007/s12010-015-1578-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/12/2015] [Indexed: 10/23/2022]
|
6
|
Tang W, Li W, Li Y, Zhang M, Zeng X. Electrochemical sensors based on multi-walled nanotubes for investigating the damage and action of 6-mercaptopurine on double-stranded DNA. NEW J CHEM 2015. [DOI: 10.1039/c5nj01303h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clear damage to dsDNA caused by 6-MP was observed. The damage to adenine was more severe than to guanine.
Collapse
Affiliation(s)
- Wenwei Tang
- Department of Chemistry
- and Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- China
| | - Weihao Li
- Handan Municipal Centre for Disease Control and Prevention
- Handan
- China
| | - Yanfei Li
- School of Life Science and Technology
- Tongji University
- Shanghai
- China
| | - Min Zhang
- School of Life Science and Technology
- Tongji University
- Shanghai
- China
| | - Xinping Zeng
- School of Life Science and Technology
- Tongji University
- Shanghai
- China
| |
Collapse
|
7
|
Tang W, Zhang M, Li W, Zeng X. An electrochemical sensor based on polyaniline for monitoring hydroquinone and its damage on DNA. Talanta 2014; 127:262-8. [DOI: 10.1016/j.talanta.2014.03.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 12/28/2022]
|
8
|
Šimánek V, Zatloukalová M, Vacek J. Electrochemical Behaviour of Alkaloids: Detection and Interaction with DNA and Proteins. HETEROCYCLES 2014. [DOI: 10.3987/rev-13-sr(s)6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Biosensor based on ds-DNA decorated chitosan modified multiwall carbon nanotubes for voltammetric biodetection of herbicide amitrole. Colloids Surf B Biointerfaces 2013; 109:45-51. [PMID: 23603042 DOI: 10.1016/j.colsurfb.2013.03.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/10/2013] [Accepted: 03/26/2013] [Indexed: 11/21/2022]
Abstract
The interaction of amitrole and salmon sperm ds-DNA was studied using UV-vis and differential pulse voltammetry (DPV) at both bare and DNA-modified electrodes. Amitrole showed an oxidation peak at 0.445 V at a bare pencil graphite electrode (PGE). When ds-DNA was added into the amitrole solution, the peak current of amitrole decreased and the peak potential underwent a shift. UV-vis spectra showed that the absorption intensity of the ds-DNA at 260 nm decreased with increasing amitrole concentration, proving the interaction between amitrole and the ds-DNA. The results also showed that amitrole could interact with the ds-DNA molecules via the intercalative binding mode. Finally, a pretreated pencil graphite electrode (PGE) modified with multiwall carbon nanotubes (MWCNTs) and chitosan (CHIT) decorated with the ds-DNA were tested in order to determine amitrole content in solution. Electrochemical oxidation of amitrole bonded on DNA/MWCNTs-CHIT/PGE was used to obtain an analytical signal. A linear dependence was observed to exist between the peak current and 0.025-2.4 ng mL(-1) amitrole with a detection limit of 0.017 ng mL(-1). The sensor showed a good selectivity and precision for the determination of amitrole. Finally, applicability of the biosensor was evaluated by measuring the analyte in soil and water samples with good selectivity.
Collapse
|
10
|
Ensafi AA, Heydari-Bafrooei E, Rezaei B. DNA-Based Biosensor for Comparative Study of Catalytic Effect of Transition Metals on Autoxidation of Sulfite. Anal Chem 2012; 85:991-7. [DOI: 10.1021/ac302693j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ali A. Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156−83111, Iran
| | | | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156−83111, Iran
| |
Collapse
|
11
|
An electrochemical method for high sensitive detection of nicotine and its interaction with bovine serum albumin. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Electrochemical investigation on the interaction of diclofenac with DNA and its application to the construction of a graphene-based biosensor. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1815-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Zhou C, Dong Y, Li Z, Xu X, Liu Z. Electrochemistry of magnolol and interaction with DNA. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Electrochemical properties and the determination of nicotine at a multi-walled carbon nanotubes modified glassy carbon electrode. Mikrochim Acta 2009. [DOI: 10.1007/s00604-009-0258-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|