1
|
Rahman Khan MM, Chakraborty N. Conducting Polymer-Based Gel Materials: Synthesis, Morphology, Thermal Properties, and Applications in Supercapacitors. Gels 2024; 10:553. [PMID: 39330155 PMCID: PMC11431190 DOI: 10.3390/gels10090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Despite the numerous ongoing research studies in the area of conducting polymer-based electrode materials for supercapacitors, the implementation has been inadequate for commercialization. Further understanding is required for the design and synthesis of suitable materials like conducting polymer-based gels as electrode materials for supercapacitor applications. Among the polymers, conductive polymer gels (CPGs) have generated great curiosity for their use as supercapacitors, owing to their attractive qualities like integrated 3D porous nanostructures, softness features, very good conductivity, greater pseudo capacitance, and environmental friendliness. In this review, we describe the current progress on the synthesis of CPGs for supercapacitor applications along with their morphological behaviors and thermal properties. We clearly explain the synthesis approaches and related phenomena, including electrochemical approaches for supercapacitors, especially their potential applications as supercapacitors based on these materials. Focus is also given to the recent advances of CPG-based electrodes for supercapacitors, and the electrochemical performances of CP-based promising composites with CNT, graphene oxides, and metal oxides is discussed. This review may provide an extensive reference for forthcoming insights into CPG-based supercapacitors for large-scale applications.
Collapse
Affiliation(s)
- Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University-1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nilave Chakraborty
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
2
|
Yu C, Dou X, Meng L, Feng X, Gao C, Chen F, Tang X. Structure, rheological properties, and biocompatibility of Laponite® cross-linked starch/polyvinyl alcohol hydrogels. Int J Biol Macromol 2023; 253:127618. [PMID: 37879585 DOI: 10.1016/j.ijbiomac.2023.127618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Hydrogels, owing to their unique porous structures, hydrophilic properties, and biocompatibility, are being developed as scaffolds for bone grafts. However, the use of toxic initiators or cross-linking agents is a drawback. To overcome this, we developed Laponite®/cross-linked starch/polyvinyl alcohol (PVA) hydrogels prepared by one-step solution mixing. The structure, rheological properties, and biocompatibility of the hydrogels were investigated. Zeta potential, Fourier transform infrared, and X-ray diffraction analyses showed that hydrogen bonding and electrostatic interactions jointly maintained the structure of the cross-linked hydrogel systems. At a Laponite® concentration of 10 %, the hydrogel with a starch/PVA ratio of 2:2 exhibited a uniform porous structure, the highest storage modulus (G'), and the lowest degradation rate. At a starch/PVA ratio of 2:2, the G' increased; however, the degradation rate decreased with the increase in Laponite® content from 5 % to 20 %. These results indicate that the mechanical strength and degradation rate of the hydrogels could be adjusted by altering the starch/PVA ratio and the amount of Laponite®. In vitro cytotoxicity experiments showed that the Laponite®/starch/PVA (LSP) hydrogels were non-toxic to MC3T3-E1 cells. The starch/PVA ratio had no obvious effect on the proliferation of MC3T3-E1 cells, but an increase in Laponite® content significantly promoted cell proliferation. In summary, the results suggest that these LSP hydrogels have great potential for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Chen Yu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinlai Dou
- College of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fenglian Chen
- College of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
3
|
Barbero CA. Functional Materials Made by Combining Hydrogels (Cross-Linked Polyacrylamides) and Conducting Polymers (Polyanilines)-A Critical Review. Polymers (Basel) 2023; 15:2240. [PMID: 37242814 PMCID: PMC10221099 DOI: 10.3390/polym15102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Hydrogels made of cross-linked polyacrlyamides (cPAM) and conducting materials made of polyanilines (PANIs) are both the most widely used materials in each category. This is due to their accessible monomers, easy synthesis and excellent properties. Therefore, the combination of these materials produces composites which show enhanced properties and also synergy between the cPAM properties (e.g., elasticity) and those of PANIs (e.g., conductivity). The most common way to produce the composites is to form the gel by radical polymerization (usually by redox initiators) then incorporate the PANIs into the network by oxidative polymerization of anilines. It is often claimed that the product is a semi-interpenetrated network (s-IPN) made of linear PANIs penetrating the cPAM network. However, there is evidence that the nanopores of the hydrogel become filled with PANIs nanoparticles, producing a composite. On the other hand, swelling the cPAM in true solutions of PANIs macromolecules renders s-IPN with different properties. Technological applications of the composites have been developed, such as photothermal (PTA)/electromechanical actuators, supercapacitors, movement/pressure sensors, etc. PTA devices rely on the absorption of electromagnetic radiation (light, microwaves, radiofrequency) by PANIs, which heats up the composite, triggering the phase transition of a thermosensitive cPAM. Therefore, the synergy of properties of both polymers is beneficial.
Collapse
Affiliation(s)
- Cesar A Barbero
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Río Cuarto 5800, Argentina
| |
Collapse
|
4
|
Karbarz M. Editorial. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
5
|
Conducting macroporous polyaniline/poly(vinyl alcohol) aerogels for the removal of chromium(VI) from aqueous media. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01151-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Tomczykowa M, Plonska-Brzezinska ME. Conducting Polymers, Hydrogels and Their Composites: Preparation, Properties and Bioapplications. Polymers (Basel) 2019; 11:E350. [PMID: 30960334 PMCID: PMC6419165 DOI: 10.3390/polym11020350] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
This review is focused on current state-of-the-art research on electroactive-based materials and their synthesis, as well as their physicochemical and biological properties. Special attention is paid to pristine intrinsically conducting polymers (ICPs) and their composites with other organic and inorganic components, well-defined micro- and nanostructures, and enhanced surface areas compared with those of conventionally prepared ICPs. Hydrogels, due to their defined porous structures and being filled with aqueous solution, offer the ability to increase the amount of immobilized chemical, biological or biochemical molecules. When other components are incorporated into ICPs, the materials form composites; in this particular case, they form conductive composites. The design and synthesis of conductive composites result in the inheritance of the advantages of each component and offer new features because of the synergistic effects between the components. The resulting structures of ICPs, conducting polymer hydrogels and their composites, as well as the unusual physicochemical properties, biocompatibility and multi-functionality of these materials, facilitate their bioapplications. The synergistic effects between constituents have made these materials particularly attractive as sensing elements for biological agents, and they also enable the immobilization of bioreceptors such as enzymes, antigen-antibodies, and nucleic acids onto their surfaces for the detection of an array of biological agents. Currently, these materials have unlimited applicability in biomedicine. In this review, we have limited discussion to three areas in which it seems that the use of ICPs and materials, including their different forms, are particularly interesting, namely, biosensors, delivery of drugs and tissue engineering.
Collapse
Affiliation(s)
- Monika Tomczykowa
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Marta Eliza Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| |
Collapse
|
7
|
Gniadek M, Malinowska S, Kaniewska K, Karbarz M, Stojek Z, Donten M. Construction of multifunctional materials by intrachannel modification of NIPA hydrogel with PANI-metal composites. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
|
9
|
Fang L, Zhao L, Liang X, Xiao H, Qian L. Effects of oxidant and dopants on the properties of cellulose/PPy conductive composite hydrogels. J Appl Polym Sci 2016. [DOI: 10.1002/app.43759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Liangjing Fang
- School of Light Industry and Engineering, State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Lihong Zhao
- School of Light Industry and Engineering, State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xiangtao Liang
- School of Light Industry and Engineering, State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Huining Xiao
- Department of Chemical Engineering; University of New Brunswick; Fredericton E3B 5A3 New Brunswick Canada
| | - Liying Qian
- School of Light Industry and Engineering, State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
10
|
Mackiewicz M, Karbarz M, Romanski J, Stojek Z. An environmentally sensitive three-component hybrid microgel. RSC Adv 2016. [DOI: 10.1039/c6ra15048a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new composite material based on a multiple-stimuli-responsive nanogel containing AuNPs and polyaniline nanofibers was synthesized and was electroactive, possessed electrocatalytic activity and formed monolayers strongly bound to the surface of gold electrodes.
Collapse
Affiliation(s)
| | - Marcin Karbarz
- Faculty of Chemistry
- University of Warsaw
- PL 02-093 Warsaw
- Poland
| | - Jan Romanski
- Faculty of Chemistry
- University of Warsaw
- PL 02-093 Warsaw
- Poland
| | - Zbigniew Stojek
- Faculty of Chemistry
- University of Warsaw
- PL 02-093 Warsaw
- Poland
| |
Collapse
|
11
|
Zhang D, Di F, Zhu Y, Xiao Y, Che J. Electroactive hybrid hydrogel: Toward a smart coating for neural electrodes. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515591647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electroactive hybrid hydrogels, composed of single-walled carbon nanotubes, polypyrrole, and poly(ethylene glycol) diacrylate–polyacrylamide, were synthesized on titanium-mesh electrodes via interfacial polymerization. The modified electrodes can be used as controlled drug delivery system by applying an external electrical stimulation of cyclic voltammetry. Investigations revealed that single-walled carbon nanotubes acted as nucleators in the hybrid hydrogel and facilitated the formation of a continuous and uniform polypyrrole coating. Simultaneous incorporation of single-walled carbon nanotubes and polypyrrole improved not only the electrochemical performance but also the drug loading capacity of the hydrogel. Study of dexamethasone release triggered by cyclic voltammetry indicated that the hybrid hydrogel exhibited good electrochemical stability, a high drug loading capacity, and a linear and sustaining drug release profile, making the modified electrode a novel high-performance drug delivery device. Moreover, in vitro experiments demonstrated that dexamethasone released from the modified electrodes well retained its bioactivity, having the same effect on reducing lipopolysaccharide-induced macrophage activation as the intact commercially available dexamethasone. More important, the obtained modified electrodes possessed good biocompatibility with neural cells, demonstrated by in vitro cell culture.
Collapse
Affiliation(s)
- Danying Zhang
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, China
| | - Feng Di
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, China
| | - Yinyan Zhu
- Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Yinghong Xiao
- Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| | - Jianfei Che
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
12
|
Comparison of electrochemical- and nuclear magnetic resonance spectroscopy methods for determination of diffusion coefficients in gel environment. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Chakraborty P, Bairi P, Roy B, Nandi AK. Improved mechanical and electronic properties of co-assembled folic acid gel with aniline and polyaniline. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3615-3622. [PMID: 24495072 DOI: 10.1021/am405868j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Co-assembled folic acid (F) gel with aniline (ANI) (ANI:F = 1:2, w/w) is produced at 2% (w/v) concentration in water/DMSO (1:1, v/v) mixture. The gel is rigid and on polymerization of the gel pieces in aqueous ammonium persulfate solution co-assembled folic acid - polyaniline (F-PANI) gel is formed. Both the co-assembled F-ANI and F-PANI gels have fibrillar network morphology, the fiber diameter and its degree of branching increase significantly from those of F gel. WAXS pattern indicates co-assembled structure with the F fiber at the core and ANI/PANI at its outer surface and the co-assembly is occurring in both F-ANI and F-PANI systems through noncovalent interaction of H-bonding and π stacking processes between the components. FTIR and UV-vis spectra characterize the doped PANI formation and the MALDI mass spectrometry indicates the degree of polymerization of polyaniline in the range 24-653. The rheological experiments support the signature of gel formation in the co-assembled state and the storage (G') and loss (G″) modulii increase in the order F gel< F-ANI gel < F-PANI gel, showing the highest increase in G' ≈ 1100% for the F-PANI gel. The stress at break, elasticity, and stiffness also increase in the same order. The dc-conductivity of F-ANI and F-PANI xerogels is 2 and 7 orders higher than that of F xerogel. Besides, the current (I)-voltage (V) curves indicate that the F-xerogel is insulator, but F-ANI xerogel is semiconductor showing both electronic memory and rectification; on the other hand, the F-PANI xerogel exhibits a negative differential resistance (NDR) property with a NDR ratio of 3.0.
Collapse
Affiliation(s)
- Priyadarshi Chakraborty
- Polymer Science Unit, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032, India
| | | | | | | |
Collapse
|
14
|
Mackiewicz M, Rapecki T, Stojek Z, Karbarz M. Environmentally sensitive, quickly responding microgels with lattice channels filled with polyaniline. J Mater Chem B 2014; 2:1483-1489. [DOI: 10.1039/c3tb21578d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zheng Y, Wang W, Zhu G, Wang A. Enhanced Selectivity for Heavy Metals Using Polyaniline-Modified Hydrogel. Ind Eng Chem Res 2013. [DOI: 10.1021/ie302562f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yian Zheng
- Center of
Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s
Republic of China
- University of Chinese Academy of Sciences, Beijing
100049, People’s Republic of China
| | - Wenbo Wang
- Center of
Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s
Republic of China
| | - Gong Zhu
- Center of
Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s
Republic of China
| | - Aiqin Wang
- Center of
Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People’s
Republic of China
| |
Collapse
|
16
|
Chen S, Zhong H, Gu B, Wang Y, Li X, Cheng Z, Zhang L, Yao C. Thermosensitive phase behavior and drug release of in situ N-isopropylacrylamide copolymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.05.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Karbarz M, Łukaszek A, Stojek Z. Electrochemical Properties of Micro- and Regular Electrodes Modified with Environmentally Sensitive Poly(N-Isopropylacrylamide) Gel via Electrochemically Induced Free-Radical Polymerization. ELECTROANAL 2012. [DOI: 10.1002/elan.201200304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|