1
|
Sharma KP, Shin M, Kim K, Woo K, Awasthi GP, Yu C. Copper nanoparticles/polyaniline/molybdenum disulfide composite as a nonenzymatic electrochemical glucose sensor. Heliyon 2023; 9:e21272. [PMID: 38076125 PMCID: PMC10709213 DOI: 10.1016/j.heliyon.2023.e21272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/16/2024] Open
Abstract
A Cu@Pani/MoS2 nanocomposite was successfully synthesized via combined in-situ oxidative polymerization and hydrothermal reaction and applied to an electrochemical nonenzymatic glucose sensor. The morphology of the prepared Cu@Pani/MoS2 nanocomposite was characterized using FE-SEM and Cs-STEM, and electrochemical analysis was performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry techniques. Electrostatic interaction between Cu@Pani and MoS2 greatly enhanced the charge dispersion, electrical conductivity, and stability, resulting in excellent electrochemical performance. The Cu@Pani/MoS2 was used as an electrocatalyst to detect glucose in an alkaline medium. The proposed glucose sensor exhibited a sensitivity, detection limit, and wide linear range of 69.82 μAmM-1cm-2, 1.78 μM, and 0.1-11 mM, respectively. The stability and selectivity of the Cu@Pani/MoS2 composite for glucose compared to that of the potential interfering species, as well as its ability to determine the glucose concentration in diluted human serum samples at a high recovery percentage, demonstrated its viability as a nonenzymatic glucose sensor.
Collapse
Affiliation(s)
- Krishna Prasad Sharma
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Kyong Kim
- Department of Rehabilitation Engineering, Daegu Hanny University, Gyeongsan, Gyeongsangbuk-do, 38609, Republic of Korea
| | - Kyungmin Woo
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Changho Yu
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
2
|
McCormick WJ, McLoughlin E, McCrudden D. Non-enzymatic glucose sensing using a nickel hydroxide/chitosan modified screen-printed electrode incorporated into a flow injection analysis system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5071-5077. [PMID: 37743796 DOI: 10.1039/d3ay01145c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
This works presents a novel screen-printed carbon electrode modified with nickel hydroxide nanoparticles and chitosan (Ni(OH)2/CS/SPCE) for the non-enzymatic flow injection amperometric detection of glucose. The electrode was modified by drop-casting a suspension of the synthesised nanocomposite onto the screen-printed electrode and dried for 1 hour at room temperature. EDX analysis was used to investigate the chemical composition of the electrode before and after modifying. The electrochemical response of the unmodified SPCE and modified electrode was initially investigated by cyclic voltammetry (CV) using 0.1 M NaOH as the supporting electrolyte. CVs showed catalytic activity for glucose oxidation using the Ni(OH)2/CS/SPCE at 0.55 V. During flow injection analysis (FIA), 0.60 V and 1.5 mL min-1 were identified as the optimal potential and flow rate, respectively. A wide linear range of detection was observed (0.2 to 10.0 mM) with a sensitivity and limit of detection of 913 μA mM-1 cm-2 and 0.0174 mM, respectively. The modified electrode also displayed excellent repeatability (RSD = 0.47%, n = 20) and good reproducibility (RSD = 2.52%, n = 6). The modified electrode was shown to be very selectivity for glucose over other interferences commonly found in human blood samples. The practicality of the developed flow injection-amperometric system (FIA-Amp) was validated by the quantification of glucose in real serum samples, where results were in close agreement with those obtained from the local hospital.
Collapse
Affiliation(s)
- Wesley J McCormick
- Department of Life and Physical Sciences, Atlantic Technology University, Letterkenny, Co. Donegal, F92 FC93, Ireland.
| | - Eva McLoughlin
- Department of Life and Physical Sciences, Atlantic Technology University, Letterkenny, Co. Donegal, F92 FC93, Ireland.
| | - Denis McCrudden
- Department of Life and Physical Sciences, Atlantic Technology University, Letterkenny, Co. Donegal, F92 FC93, Ireland.
| |
Collapse
|
3
|
Nandhini C, Arul P, Huang ST, Tominaga M, Huang CH. Electrochemical sensing of dual biomolecules in live cells and whole blood samples: A flexible gold wire-modified copper-organic framework-based hybrid composite. Bioelectrochemistry 2023; 152:108434. [PMID: 37028136 DOI: 10.1016/j.bioelechem.2023.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
For clinical research, the precise measurement of hydrogen peroxide (H2O2) and glucose (Glu) is of paramount importance, due to their imbalanced concentrations in blood glucose, and reactive oxygen species (ROS) play a huge role in COVID-19 viral disease. It is critical to construct and develop a simple, rapid, flexible, long-term, and sensitive detection of H2O2 and glucose. In this paper, we have developed a unique morphological structure of MOF(Cu) on a single-walled carbon nanotube-modified gold wire (swnt@gw). Highly designed frameworks with nanotube composites enhance electron rate-transfer behavior while extending conductance and electroactive surface area.The composite sensing system delivers wide linear-range concentrations, low detection limit, and interference-free performance in co-existence with other biomolecules and metal ions. Endogenous quantitative tracking of H2O2 was performed in macrophage live-cells with the help of a strong stimulator lipopolysaccharide.The composite device was effectively utilized for the measurement of H2O2 and glucose in turbid samples of whole blood and milk samples without a pretreatment process. The practical results of biofluids showed favorable voltammetric results and acceptance recovery percentage levels between 97.49 and 98.88%. Finally, a flexible MOF-based hybrid system may provide a suitable detection platform in the construction of electro-biosensors and hold potential promise for clinical-sensory applications.
Collapse
Affiliation(s)
- C Nandhini
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Masato Tominaga
- Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Chih-Hung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| |
Collapse
|
4
|
Nuh S, Numnuam A, Thavarungkul P, Phairatana T. A Novel Microfluidic-Based OMC-PEDOT-PSS Composite Electrochemical Sensor for Continuous Dopamine Monitoring. BIOSENSORS 2022; 13:68. [PMID: 36671903 PMCID: PMC9855352 DOI: 10.3390/bios13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Fast and precise analysis techniques using small sample volumes are required for next-generation clinical monitoring at the patient's bedside, so as to provide the clinician with relevant chemical data in real-time. The integration of an electrochemical sensor into a microfluidic chip allows for the achievement of real-time chemical monitoring due to the low consumption of analytes, short analysis time, low cost, and compact size. In this work, dopamine, used as a model, is an important neurotransmitter responsible for controlling various vital life functions. The aim is to develop a novel serpentine microfluidic-based electrochemical sensor, using a screen-printed electrode for continuous dopamine detection. The developed sensor employed the composite of ordered mesoporous carbon (OMC) and poly (3,4 ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT-PSS). The performance of a microfluidic, integrated with the sensor, was amperometrically evaluated using a computer-controlled microfluidic platform. The microfluidic-based dopamine sensor exhibited a sensitivity of 20.2 ± 0.6 μA μmol L-1, and a detection limit (LOD) of 21.6 ± 0.002 nmol L-1, with high selectivity. This microfluidic-based electrochemical sensor was successfully employed to determine dopamine continuously, which could overcome the problem of sensor fouling with more than 90% stability for over 24 h. This novel microfluidic sensor platform provides a powerful tool for the development of a continuous dopamine detection system for human clinical application.
Collapse
Affiliation(s)
- Sofwan Nuh
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Apon Numnuam
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Songkhla 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tonghathai Phairatana
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
5
|
Naikoo GA, Awan T, Salim H, Arshad F, Hassan IU, Pedram MZ, Ahmed W, Faruck HL, Aljabali AAA, Mishra V, Serrano‐Aroca Á, Goyal R, Negi P, Birkett M, Nasef MM, Charbe NB, Bakshi HA, Tambuwala MM. Fourth-generation glucose sensors composed of copper nanostructures for diabetes management: A critical review. Bioeng Transl Med 2022; 7:e10248. [PMID: 35111949 PMCID: PMC8780923 DOI: 10.1002/btm2.10248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023] Open
Abstract
More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger-pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose-sensing devices and reduce the number of intermediary steps during glucose measurement, fourth-generation glucose sensors (FGGS) have been introduced. These sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic efficiency and cost-effectiveness. This review aims to present the essential scientific progress in copper nanostructure-based FGGS in the past 10 years (2010 to present). After a short introduction, we presented the working principles of these sensors. We then highlighted the importance of copper nanostructures as advanced electrode materials to develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and prospects for developing highly sensitive, stable, and specific FGGS.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahOman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahOman
| | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahOman
| | - Fareeha Arshad
- Department of BiochemistryAligarh Muslim UniversityAligarhIndia
| | | | - Mona Zamani Pedram
- Faculty of Mechanical Engineering—Energy DivisionK.N. Toosi University of TechnologyTehranIran
| | - Waqar Ahmed
- School of Mathematics and PhysicsCollege of Science, University of LincolnLincolnUK
| | | | - Alaa A. A. Aljabali
- Departmnt of Pharmaceutics and Pharmaceutical TechnologyYarmouk UniversityIrbidJordan
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Ángel Serrano‐Aroca
- Biomaterials and Bioengineering LabTranslational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente MártirValenciaSpain
| | - Rohit Goyal
- School of Pharmaceutical SciencesShoolini University of Biotechnology and Management SciencesSolanIndia
| | - Poonam Negi
- School of Pharmaceutical SciencesShoolini University of Biotechnology and Management SciencesSolanIndia
| | - Martin Birkett
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneUK
| | - Mohamed M. Nasef
- Department of PharmacySchool of Applied Science, University of HuddersfieldUK
| | - Nitin B. Charbe
- Department of Pharmaceutical SciencesRangel College of Pharmacy, Texas A&M UniversityKingsvilleTexasUSA
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | |
Collapse
|
6
|
Barros Azeredo NF, Ferreira Santos MS, Sempionatto JR, Wang J, Angnes L. Screen-Printed Technologies Combined with Flow Analysis Techniques: Moving from Benchtop to Everywhere. Anal Chem 2021; 94:250-268. [PMID: 34851628 DOI: 10.1021/acs.analchem.1c02637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Screen-printed electrodes (SPEs) coupled with flow systems have been reported in recent decades for an ever-growing number of applications in modern electroanalysis, aiming for portable methodologies. The information acquired through this combination can be attractive for future users with basic knowledge, especially due to the increased measurement throughput, reduction in reagent consumption and minimal waste generation. The trends and possibilities of this set rely on the synergistic behavior that maximizes both SPE and flow analyses characteristics, allowing mass production and automation. This overview addresses an in-depth update about the scope of samples, target analytes, and analytical throughput (injections per hour, limits of detection, linear range, etc.) obtained by coupling injection techniques (FIA, SIA, and BIA) with SPE-based electrochemical detection.
Collapse
Affiliation(s)
- Nathália Florência Barros Azeredo
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil.,Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Juliane R Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lúcio Angnes
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil
| |
Collapse
|
7
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Liu Z, Sartori AF, Buijnsters JG. Role of sp2 carbon in non-enzymatic electrochemical sensing of glucose using boron-doped diamond electrodes. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
9
|
Anand VK, Bhatt K, Kumar S, Archana B, Sharma S, Singh K, Gupta M, Goyal R, Virdi GS. Sensitive and Enzyme-Free Glucose Sensor Based on Copper Nanowires/Polyaniline/Reduced Graphene Oxide Nanocomposite Ink. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we report the preparation and characterization of a sensitive and reusable nonenzymatic glucose (NEG) sensor based on copper nanowires (CuNWs)/polyaniline (PANI)/reduced graphene oxide (rGO) nanocomposite ink. The CuNWs/PANI/rGO nanocomposite ink was prepared by solvothermal mixing of CuNWs, PANI, rGO and binders. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier Transform Infra-Red (FT-IR) spectroscopy techniques were used to assess the structural and morphological parameters of prepared nanocomposite ink. The cyclic voltammetry (CV) technique was used to estimate the electrochemical behavior of prepared NEG sensor. The structural, morphological and spectroscopy results confirmed the change in morphological and oxidation state of CuNWs to CuO nanostructures as a constituent of nanocomposite ink. The CuO nanostructures supported on PANI/rGO demonstrated good electrochemical stability and great electrocatalytic activity toward glucose oxidation. At a glucose oxidation potential of 0.64V, the prepared NEG sensor exhibited great electrocatalytic ability by offering a high sensitivity of 843.06[Formula: see text]AmM[Formula: see text]cm[Formula: see text] in the linear glucose range 0–4mM with a lower detection limit of 1.6mM. In addition to these outstanding performance characteristics, CuNWs/PANI/rGO nanocomposite ink-based NEG sensor has the advantages of ease of fabrication, low cost and reusability.
Collapse
Affiliation(s)
| | - Kapil Bhatt
- ECE Department, UIT, Himachal Pradesh University, Shimla, India
- UIET, Kurukshetra University, Kurukshetra, India
| | - Sandeep Kumar
- National Centre for Flexible Electronics, Indian Institute of Technology, Kanpur, India
| | - B. Archana
- ECE Department, Ambala College of Engineering and Applied Research, Ambala, India
| | | | | | - Monish Gupta
- UIET, Kurukshetra University, Kurukshetra, India
| | - Rakesh Goyal
- I. K. Gujral Punjab Technical University, Jalandhar, India
| | - G. S. Virdi
- I. K. Gujral Punjab Technical University, Jalandhar, India
| |
Collapse
|
10
|
Dong Q, Ryu H, Lei Y. Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137744] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Fang L, Cai Y, Huang B, Cao Q, Zhu Q, Tu T, Ye X, Liang B. A highly sensitive nonenzymatic glucose sensor based on Cu/Cu2O composite nanoparticles decorated single carbon fiber. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. APPLIED SYSTEM INNOVATION 2020. [DOI: 10.3390/asi3030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The essential disadvantages of conventional glucose enzymatic biosensors such as high fabrication cost, poor stability of enzymes, pH value-dependent, and dedicated limitations, have been increasing the attraction of non-enzymatic glucose sensors research. Beneficially, patients with diabetes could use this type of sensor as a fourth-generation of glucose sensors with a very low cost and high performance. We demonstrate the most common acceptable transducer for a non-enzymatic glucose biosensor with a brief description of how it works. The review describes the utilization of graphene and its composites as new materials for high-performance non-enzymatic glucose biosensors. The electrochemical properties of graphene and the electrochemical characterization using the cyclic voltammetry (CV) technique of electrocatalysis electrodes towards glucose oxidation have been summarized. A recent synthesis method of the graphene-based electrodes for non-enzymatic glucose sensors have been introduced along with this study. Finally, the electrochemical properties such as linearity, sensitivity, and the limit of detection (LOD) for each sensor are introduced with a comparison with each other to figure out their strengths and weaknesses.
Collapse
|
13
|
Antuña-Jiménez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. BIOSENSORS 2020; 10:E9. [PMID: 32024126 PMCID: PMC7167755 DOI: 10.3390/bios10020009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/24/2023]
Abstract
Recent progress in the field of electroanalysis with metal nanoparticle (NP)-based screen-printed electrodes (SPEs) is discussed, focusing on the methods employed to perform the electrode surface functionalization, and the final application achieved with different types of metallic NPs. The ink mixing approach, electrochemical deposition, and drop casting are the usual methodologies used for SPEs' modification purposes to obtain nanoparticulated sensing phases with suitable tailor-made functionalities. Among these, applications on inorganic and organic molecule sensing with several NPs of transition metals, bimetallic alloys, and metal oxides should be highlighted.
Collapse
Affiliation(s)
| | | | | | - Pablo Fanjul-Bolado
- Metrohm DropSens S.L., Edificio CEEI-Parque Tecnológico de Asturias, 33428 Llanera, Spain; (D.A.-J.); (M.B.G.-G.); (D.H.-S.)
| |
Collapse
|
14
|
Muthurasu A, Kim HY. Fabrication of Hierarchically Structured MOF‐Co
3
O
4
on Well‐aligned CuO Nanowire with an Enhanced Electrocatalytic Property. ELECTROANAL 2019. [DOI: 10.1002/elan.201800823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alagan Muthurasu
- Department of BIN Convergence TechnologyChonbuk National University Republic Korea
| | - Hak Yong Kim
- Department of BIN Convergence TechnologyChonbuk National University Republic Korea
- Department of Organic Materials and Fiber EngineeringChonbuk National University Jeonju 561-756 Republic of Korea
| |
Collapse
|
15
|
Muthuraman G, Silambarasan P, Moon I. Real time potentiometric macro flow sensor: An innovative tool to monitor electrogenerated electron mediator in high concentrated electrolyte during electrolysis and air pollutants removal. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Low-Temperature CVD Graphene Nanostructures on Cu and Their Corrosion Properties. MATERIALS 2018; 11:ma11101989. [PMID: 30326613 PMCID: PMC6213400 DOI: 10.3390/ma11101989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 11/29/2022]
Abstract
Chemical vapor deposition (CVD) graphene is reported to effectively prevent the penetration of outer factors and insulate the underneath metals, hence achieving an anticorrosion purpose. However, there is little knowledge about their characteristics and corresponding corrosion properties, especially for those prepared under different parameters at low temperatures. Using electron cyclotron resonance chemical vapor deposition (ECR-CVD), we can successfully prepare graphene nanostructures on copper (Cu) at temperatures lower than 600 °C. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and potentiodynamic polarization measurements were used to characterize these samples. In simulated seawater, i.e., 3.5 wt.% sodium chloride (NaCl) solution, the corrosion current density of one graphene-coated Cu fabricated at 400 °C can be 1.16 × 10−5 A/cm2, which is one order of magnitude lower than that of pure Cu. Moreover, the existence of tall graphene nanowalls was found not to be beneficial to the protection as a consequence of their layered orientation. These correlations among the morphology, structure, and corrosion properties of graphene nanostructures were investigated in this study. Therefore, the enhanced corrosion resistance in selected cases suggests that the low-temperature CVD graphene under appropriate conditions would be able to protect metal substrates against corrosion.
Collapse
|
17
|
Kurbanoglu S, Unal MA, Ozkan SA. Recent developments on electrochemical flow injection in pharmaceuticals and biologically important compounds. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
High-temperature annealing enabled iridium oxide nanofibers for both non-enzymatic glucose and solid-state pH sensing. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Shiba S, Maruyama R, Kamata T, Kato D, Niwa O. Chromatographic Determination of Sugar Probes Used for Gastrointestinal Permeability Test by Employing Nickel-Copper Nanoalloy Embedded in Carbon Film Electrodes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shunsuke Shiba
- Advanced Science Research Laboratory; Saitama Institute of Technology, Fusaiji, 1690, Fukaya; Saitama 369-0293 Japan
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba; Ibaraki 305-8566 Japan
- Graduate School of Pure and Applied Sciences; University of Tsukuba, 1-1-1 Tennodai, Tsukuba; Ibaraki 305-8573 Japan
| | - Rina Maruyama
- Advanced Science Research Laboratory; Saitama Institute of Technology, Fusaiji, 1690, Fukaya; Saitama 369-0293 Japan
| | - Tomoyuki Kamata
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba; Ibaraki 305-8566 Japan
| | - Dai Kato
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba; Ibaraki 305-8566 Japan
| | - Osamu Niwa
- Advanced Science Research Laboratory; Saitama Institute of Technology, Fusaiji, 1690, Fukaya; Saitama 369-0293 Japan
| |
Collapse
|
20
|
Shaidarova LG, Chelnokova IA, Leksina YA, Il’ina MA, Gedmina AV, Budnikov HC. Flow-Injection Amperometric Determination of DOPA and Tyrosine at a Dual Electrode Modified with the Gold–Cobalt Binary System. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Goldoni A, Alijani V, Sangaletti L, D'Arsiè L. Advanced promising routes of carbon/metal oxides hybrids in sensors: A review. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.170] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Mikrochim Acta 2017; 185:49. [PMID: 29594566 DOI: 10.1007/s00604-017-2609-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022]
Abstract
An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.
Collapse
|
23
|
Pérez-Fernández B, Martín-Yerga D, Costa-García A. Galvanostatic electrodeposition of copper nanoparticles on screen-printed carbon electrodes and their application for reducing sugars determination. Talanta 2017; 175:108-113. [PMID: 28841966 DOI: 10.1016/j.talanta.2017.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022]
Abstract
In this work, a novel method for the galvanostatic electrodeposition of copper nanoparticles on screen-printed carbon electrodes was developed. Nanoparticles of spherical morphology with sizes between 60 and 280nm were obtained. The electrocatalytic effect of these copper nanospheres towards the oxidation of different sugars was studied. Excellent analytical performance was obtained with the nanostructured sensor: low detection limits and wide linear ranges (1-10,000µM) were achieving for the different reducing sugars evaluated (glucose, fructose, arabinose, galactose, mannose, xylose) with very similar calibration slopes, which demonstrates the possibility of total sugar detection. The reproducibility of these sensors was 4.4% (intra-electrode) and 7.2% (inter-electrode). The stability of the nanostructured electrodes was at least 30 days, even using the same device on different days. Several real samples (honey, orange juice and normal and sugar-free soft drinks) were evaluated to study the reliability of the nanostructured sensor.
Collapse
Affiliation(s)
- Beatriz Pérez-Fernández
- Nano-bioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Spain
| | - Daniel Martín-Yerga
- Nano-bioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Spain
| | - Agustín Costa-García
- Nano-bioanalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Spain.
| |
Collapse
|
24
|
Jana A, Scheer E, Polarz S. Synthesis of graphene-transition metal oxide hybrid nanoparticles and their application in various fields. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:688-714. [PMID: 28462071 PMCID: PMC5372707 DOI: 10.3762/bjnano.8.74] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 05/20/2023]
Abstract
Single layer graphite, known as graphene, is an important material because of its unique two-dimensional structure, high conductivity, excellent electron mobility and high surface area. To explore the more prospective properties of graphene, graphene hybrids have been synthesised, where graphene has been integrated with other important nanoparticles (NPs). These graphene-NP hybrid structures are particularly interesting because after hybridisation they not only display the individual properties of graphene and the NPs, but also they exhibit further synergistic properties. Reduced graphene oxide (rGO), a graphene-like material, can be easily prepared by reduction of graphene oxide (GO) and therefore offers the possibility to fabricate a large variety of graphene-transition metal oxide (TMO) NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs), sensors, photocatalysts, removal of organic pollutants, etc. Recent studies have shown that a single graphene sheet (GS) has extraordinary electronic transport properties. One possible route to connecting those properties for application in electronics would be to prepare graphene-wrapped TMO NPs. In this critical review, we discuss the development of graphene-TMO hybrids with the detailed account of their synthesis. In addition, attention is given to the wide range of applications. This review covers the details of graphene-TMO hybrid materials and ends with a summary where an outlook on future perspectives to improve the properties of the hybrid materials in view of applications are outlined.
Collapse
Affiliation(s)
- Arpita Jana
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Elke Scheer
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Sebastian Polarz
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
25
|
Martín-Yerga D, Carrasco-Rodríguez J, Fierro JLG, García Alonso FJ, Costa-García A. Copper-modified titanium phosphate nanoparticles as electrocatalyst for glucose detection. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Gnana kumar G, Amala G, Gowtham SM. Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv 2017. [DOI: 10.1039/c7ra02845h] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review elucidates the recent advances in graphene platforms in electrochemical non-enzymatic glucose sensors and provides solutions for existing bottlenecks.
Collapse
Affiliation(s)
- G. Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - G. Amala
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - S. M. Gowtham
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|
27
|
Zheng W, Hu L, Lee LYS, Wong KY. Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.08.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Ju L, Wu G, Lu B, Li X, Wu H, Liu A. Non-enzymatic Amperometric Glucose Sensor Based on Copper Nanowires Decorated Reduced Graphene Oxide. ELECTROANAL 2016. [DOI: 10.1002/elan.201600100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lele Ju
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Guosong Wu
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Biao Lu
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xiaoyun Li
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Huaping Wu
- Key Laboratory of E&M (Zhejiang University of Technology); Ministry of Education & Zhejiang Province; Hangzhou 310014 China
| | - Aiping Liu
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
29
|
Cinti S, Arduini F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosens Bioelectron 2016; 89:107-122. [PMID: 27522348 DOI: 10.1016/j.bios.2016.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023]
Abstract
K.S. Novoselov in his Nobel lecture (December 8, 2010), described graphene as "more than just a flat crystal" and summarized the best possible impression of graphene with (i) it is the first example of 2D atomic crystals, (ii) it demonstrated unique electronic properties, thanks to charge carriers which mimic massless relativistic particles, and (iii) it has promise for a number of applications. The fascinating and unusual properties of this 2D material were indeed recently investigated and exploited in several disciplines including physics, medicine, and chemistry, indicating the extremely versatile and polyedric aspect of this nanomaterial. The utilization of nanomaterials, printed technology, and microfluidics in electroanalysis has resulted in a period that can be called the "Electroanalysis Renaissance" (Escarpa, 2012) in which graphene is without any doubt a forefront nanomaterial. The rise in affordable fabrication processes, along with the great dispersing attitude in a plenty of matrices, have made graphene powerful in large-scale production of electrochemical platforms. Herein, we overview the employment of graphene to customize and/or fabricate printable based (bio)sensors over the past 5 years, including several modification approaches such as drop casting, screen- and inkjet-printing, different strategies of graphene-based sensing, and applications as well. The objective of this review is to provide a critical perspective related to advantages and disadvantages of using graphene in biosensing tools, based on screen-printed sensors.
Collapse
Affiliation(s)
- Stefano Cinti
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy; National Institute of Biostructures and Biosystems, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy.
| |
Collapse
|
30
|
2-Dimensional graphene as a route for emergence of additional dimension nanomaterials. Biosens Bioelectron 2016; 89:8-27. [PMID: 26992844 DOI: 10.1016/j.bios.2016.02.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Dimension has a different and impactful significance in the field of innovation, research and technologies. Starting from one-dimension, now, we all are moving towards 3-D visuals and try to do the things in this dimension. However, we still have some very innovative and widely applicable nanomaterials, which have tremendous potential in the form of 2-D only i.e. graphene. In this review, we have tried to incorporate the reported pathways used so far for modification of 2-D graphene sheets to make is three-dimensional. The modified graphene been applied in many fields like supercapacitors, sensors, catalysis, energy storage devices and many more. In addition, we have also incorporated the conversion of 2-D graphene to their various other dimensions like zero-, one- or three-dimensional nanostructures.
Collapse
|
31
|
Xue Z, Li M, Rao H, Yin B, Zhou X, Liu X, Lu X. Phase transformation-controlled synthesis of CuO nanostructures and their application as an improved material in a carbon-based modified electrode. RSC Adv 2016. [DOI: 10.1039/c5ra22297d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Column-shaped CuO nanorods have been synthesized by a two-step “precursor formation-crystallization” process using a hydrothermal method with advantages of being template- and surfactant-free.
Collapse
Affiliation(s)
- Zhonghua Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Mengqian Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | | | - Bo Yin
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xibin Zhou
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry & Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
32
|
Zhang Y, Shen J, Li H, Wang L, Cao D, Feng X, Liu Y, Ma Y, Wang L. Recent Progress on Graphene-based Electrochemical Biosensors. CHEM REC 2015; 16:273-94. [DOI: 10.1002/tcr.201500236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Yu Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Jingjing Shen
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Huihua Li
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Linlin Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Dashun Cao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Yuge Liu
- The South Subtropical Crops Research Institute Chinese Academy of Tropical Agricultural Science; Zhanjiang 524091 P. R. China
| | - Yanwen Ma
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM); 9 Wenyuan Road Nanjing 210023 P. R. China
| |
Collapse
|
33
|
CdS quantum dots modified CuO inverse opal electrodes for ultrasensitive electrochemical and photoelectrochemical biosensor. Sci Rep 2015; 5:10838. [PMID: 26042520 PMCID: PMC4455289 DOI: 10.1038/srep10838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/15/2015] [Indexed: 01/05/2023] Open
Abstract
The CuO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method and modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR). CdS QDs modified CuO IOPCs FTO electrodes of different SILAR cycles were fabricated and their electrochemical properties were studied by cyclic voltammetry (CV) and chronoamperometry (I-t). Structure and morphology of the samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), high-resolution TEM (HRTEM), Energy-dispersive X-ray analysis (EDX) and X-ray diffraction pattern (XRD). The result indicated that the structure of IOPCs and loading of CdS QDs could greatly improve the electrochemical properties. Three SILAR cycles of CdS QDs sensitization was the optimum condition for preparing electrodes, it exhibited a sensitivity of 4345 μA mM(-1) cm(-2) to glucose with a 0.15 μM detection limit (S/N= 3) and a linear range from 0.15 μM to 0.5 mM under a working potential of +0.7 V. It also showed strong stability, good reproducibility, excellent selectivity and fast amperometric response. This work provides a promising approach for realizing excellent photoelectrochemical nonenzymatic glucose biosensor of similar composite structure.
Collapse
|
34
|
Joshi AC, Markad GB, Haram SK. Rudimentary simple method for the decoration of graphene oxide with silver nanoparticles: Their application for the amperometric detection of glucose in the human blood samples. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Yang JM, Wang SA. Preparation of graphene-based poly(vinyl alcohol)/chitosan nanocomposites membrane for alkaline solid electrolytes membrane. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Rattanarat P, Teengam P, Siangproh W, Ishimatsu R, Nakano K, Chailapakul O, Imato T. An Electrochemical Compact Disk-type Microfluidics Platform for Use as an Enzymatic Biosensor. ELECTROANAL 2015. [DOI: 10.1002/elan.201400590] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Gualandi I, Marzocchi M, Scavetta E, Calienni M, Bonfiglio A, Fraboni B. A simple all-PEDOT:PSS electrochemical transistor for ascorbic acid sensing. J Mater Chem B 2015; 3:6753-6762. [DOI: 10.1039/c5tb00916b] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An all-PEDOT:PSS electrochemical transistor was used to detect ascorbic acid, which is an excellent platform for developing chemical sensors.
Collapse
Affiliation(s)
- I. Gualandi
- Dipartimento di Fisica e Astronomia
- Università di Bologna
- Bologna
- Italy
| | - M. Marzocchi
- Dipartimento di Fisica e Astronomia
- Università di Bologna
- Bologna
- Italy
| | - E. Scavetta
- Dipartimento di Chimica Industriale Toso Montanari
- Università di Bologna
- Bologna
- Italy
| | - M. Calienni
- Dipartimento di Fisica e Astronomia
- Università di Bologna
- Bologna
- Italy
| | - A. Bonfiglio
- Dipartimento di Ingegneria Elettrica ed Elettronica
- Università di Cagliari
- Cagliari
- Italy
| | - B. Fraboni
- Dipartimento di Fisica e Astronomia
- Università di Bologna
- Bologna
- Italy
| |
Collapse
|
38
|
Dong J, Tian T, Ren L, Zhang Y, Xu J, Cheng X. CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing. Colloids Surf B Biointerfaces 2015; 125:206-12. [DOI: 10.1016/j.colsurfb.2014.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/24/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
39
|
Construction of a non-enzymatic glucose sensor based on copper nanoparticles/poly(o-phenylenediamine) nanocomposites. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2659-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Ma Y, Zhao M, Cai B, Wang W, Ye Z, Huang J. 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. Biosens Bioelectron 2014; 59:384-8. [DOI: 10.1016/j.bios.2014.03.064] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/14/2014] [Accepted: 03/31/2014] [Indexed: 01/09/2023]
|
41
|
Long M, Tan L, Liu H, He Z, Tang A. Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. Biosens Bioelectron 2014; 59:243-50. [DOI: 10.1016/j.bios.2014.03.032] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 11/26/2022]
|
42
|
|
43
|
Mohd Yazid SNA, Md Isa I, Abu Bakar S, Hashim N, Ab Ghani S. A Review of Glucose Biosensors Based on Graphene/Metal Oxide Nanomaterials. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.888731] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
44
|
Nanoleaf-on-sheet CuO/graphene composites: Microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.155] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Wang Z, Xiao Y, Cui X, Cheng P, Wang B, Gao Y, Li X, Yang T, Zhang T, Lu G. Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3888-95. [PMID: 24456151 DOI: 10.1021/am404858z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Urchinlike CuO modified by reduced graphene oxide (rGO) was synthesized by a one-pot microwave-assisted hydrothermal method. The as-prepared composites were characterized using various characterization methods. A humidity sensor based on the CuO/rGO composites was fabricated and tested. The results revealed that the sensor based on the composites showed much higher impedance than pure CuO. Compared with the sensors based on pristine rGO and CuO, the sensor fabricated with the composites exhibited relatively good humidity-sensing performance in terms of response time and response value. The humidity-sensing mechanism was also briefly introduced. The enlargement of the impedance and improvement of the humidity-sensing properties are briefly explained by the Schottky junction theory.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Cheng WL, Chang JL, Su YL, Zen JM. Facile Fabrication of Zirconia Modified Screen-Printed Carbon Electrodes for Electrochemical Sensing of Phosphate. ELECTROANAL 2013. [DOI: 10.1002/elan.201300387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Xin Y, Fu-bing X, Hong-wei L, Feng W, Di-zhao C, Zhao-yang W. A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Mechanistic study of glucose oxidation on copper sulfide modified glassy carbon electrode. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Liu Z, Yadian B, Liu H, Liu C, Zhang B, Ramanujan R, Huang Y. Fabrication of hybrid CuO/Pt/Si nanoarray for non-enzymatic glucose sensing. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|