1
|
Synthesis and characterization of sensitive molecularly imprinting electrochemical sensor based on chitosan modified aminoated hierarchical porous silica-supported gold for detection of 2, 4-dichlorophenoxyacetic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Li J, Wang C, Chen X, Huang M, Fu Q, Li R, Wang Y, Li C, Zhao P, Xie Y, Fei J. A non-enzymatic photoelectrochemical sensor based on g-C 3N 4@CNT heterojunction for sensitive detection of antioxidant gallic acid in food. Food Chem 2022; 389:133086. [PMID: 35526285 DOI: 10.1016/j.foodchem.2022.133086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022]
Abstract
Gallic acid (GA) is found in a wide range of natural plants and is relevant to the health of human beings. Here, a photoelectrochemical sensing platform based on g-C3N4@CNT heterojunction has been prepared for the highly sensitive and selective detection of GA. Under the light of xenon lamp, the photocurrent of g-C3N4@CNT is 7 times higher than that of g-C3N4. And the sensor generates 4 times more photocurrent in the presence of GA than without GA. This sensor has a wide linear range from 10 nM to 10 μM with a limit of detection as low as 2 nM. Also, the abundant amino groups of g-C3N4 provide excellent selectivity for the sensor. Furthermore, the sensor can be used for the analysis of GA in black tea samples, which provides a novel and rapid method for the detection of GA in food samples.
Collapse
Affiliation(s)
- Jiaodi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People's Republic of China
| | - Chenxi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaoling Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Minghui Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Qian Fu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Rongjie Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People's Republic of China
| | - Chunyan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People's Republic of China.
| |
Collapse
|
3
|
Fabrication of molecularly imprinted nanochannel membrane for ultrasensitive electrochemical detection of triphenyl phosphate. Anal Chim Acta 2022; 1192:339374. [DOI: 10.1016/j.aca.2021.339374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
|
4
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Liu R, Wei X, Li J. Synergy of electrocatalysis on photoelectrocatalysis and amperometric determination of trace glucose. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Goswami B, Mahanta D. Fe 3O 4-Polyaniline Nanocomposite for Non-enzymatic Electrochemical Detection of 2,4-Dichlorophenoxyacetic Acid. ACS OMEGA 2021; 6:17239-17246. [PMID: 34278110 PMCID: PMC8280687 DOI: 10.1021/acsomega.1c00983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/28/2021] [Indexed: 05/13/2023]
Abstract
This study proposes the development of an electrochemical sensor based on fabrication of a glassy carbon electrode (GCE) with Fe3O4-polyaniline (Fe3O4-PANI) nanocomposite, which was further used for enzyme-less detection of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous medium. Spectroscopic studies, microstructural studies, and elemental analysis established the formation of Fe3O4 nanoparticles with polyaniline coating. The fabricated Fe3O4-PANI-GCE was characterized by electrochemical techniques like cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical response of 2,4-D on Fe3O4-PANI-GCE was evaluated by performing cyclic voltammetry and amperometry experiments. The synergistic effect of the composite causes the superior electrochemical behavior of Fe3O4-PANI-GCE toward the detection of 2,4-D. Amperometric measurements exhibited a linear concentration range from 1.35 to 2.7 μM. The sensitivity and detection limit were evaluated from the amperometric responses, which were found to be 4.62 × 10-7 μA μM-1 cm-2 and 0.21 μM, respectively. The electrochemical sensing response could be attributed to adsorption of 2,4-D onto the Fe3O4-PANI-modified GCE (Fe3O4-PANI-GCE) surface. Fe3O4-PANI-GCE is found to be a simple, low-cost, and biocompatible non-enzymatic sensor for detection of 2,4-D in aqueous medium at ambient temperature.
Collapse
Affiliation(s)
- Bhanita Goswami
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| | - Debajyoti Mahanta
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| |
Collapse
|
7
|
Kumar S, Mehta D, Chaudhary S, Chaudhary GR. Pr@Gd2O3 nanoparticles: An effective fluorescence sensor for herbicide 2,4-dichlorophenoxyacetic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Wang H, Han Q, Ren X, Wang H, Kuang X, Wu D, Wei Q. Photoelectrochemical self-powered biosensing cathodic platform by NiO nanosheets/RGO/BiOI heterostructures for detection of glucose. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Li X, Zhong L, Liu R, Wei X, Li J. A molecularly imprinted photoelectrochemical sensor based on the use of Bi 2S 3 for sensitive determination of dioctyl phthalate. Mikrochim Acta 2019; 186:688. [PMID: 31595361 DOI: 10.1007/s00604-019-3812-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/10/2019] [Indexed: 11/28/2022]
Abstract
A molecularly imprinted polymer photoelectrochemical (MIP-PEC) sensor based on bismuth sulfide (Bi2S3) is described for the determination of the plasticizer dioctyl phthalate (DOP). Bi2S3 was used as the photoelectrical converter of the sensor, and visible light was utilized as the excitation source. The molecular imprinting film was prepared through the electropolymerization of monomers in the presence of DOP. Under optimal experimental conditions, the photoelectrochemical response was linearly proportional to the logarithm of the DOP concentration in the 0.5-70 pM DOP concentration range, and the detection limit was 0.1 pM. The method is highly stable and reproducible. It was applied to the determination of DOP in spiked water samples. Graphical abstract A novel molecularly imprinted photoelectrochemical sensor with high sensitivity and high selectivity based on Bi2S3 was developed for dioctyl phthalate detection. Bi2S3 was firstly used as a photoelectric converter in photoelectrochemical sensor to improve the sensitivity of the sensor. Combining photocurrent measurement with molecular imprinting technique makes the sensor highly selective.
Collapse
Affiliation(s)
- Xiuqi Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Li Zhong
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Ruilin Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Xiaoping Wei
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi, 541004, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi, 541004, China.
| |
Collapse
|
10
|
Novel QCM and SPR sensors based on molecular imprinting for highly sensitive and selective detection of 2,4-dichlorophenoxyacetic acid in apple samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:483-491. [DOI: 10.1016/j.msec.2019.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 11/22/2022]
|
11
|
|
12
|
Zhu Y, Yan K, Xu Z, Wu J, Zhang J. Cathodic "signal-on" photoelectrochemical aptasensor for chloramphenicol detection using hierarchical porous flower-like Bi-BiOI@C composite. Biosens Bioelectron 2019; 131:79-87. [PMID: 30826654 DOI: 10.1016/j.bios.2019.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
A novel p-type semiconductor-based cathodic "signal-on" photoelectrochemical (PEC) aptasensor was proposed for highly sensitive and selective detection of chloramphenicol (CAP). The photocathode was fabricated with hierarchical porous flower-like Bi-BiOI@C composite synthesized via a one-pot solvothermal method using glucose as both green reductant and carbon precursor. Due to the surface plasmon resonance (SPR) effect of Bi and high-conductivity of carbon, the composite exhibited an enhanced cathodic photocurrent as compared with pure BiOI or Bi-BiOI. When CAP-binding aptamer was immobilized as recognition element on Bi-BiOI@C modified electrode, a cathodic PEC aptasensor showing specific "signal-on" response to CAP was constructed. Some influencing factors such as coating amount of Bi-BiOI@C suspension, applied bias potential, and aptamer concentration were studied. Under the optimum conditions, the cathodic photocurrent of the constructed PEC aptasensor increased linearly with CAP concentration from 2 to 250 nM, with a detection limit (3S/N) of 0.79 nΜ. The proposed sensor was successfully applied to the determination of CAP in pharmaceutical tablet, eye drop and lake water samples.
Collapse
Affiliation(s)
- Yuhan Zhu
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Kai Yan
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Zuwei Xu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Jinnan Wu
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China
| | - Jingdong Zhang
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, PR China.
| |
Collapse
|
13
|
Xu Y, Kutsanedzie FYH, Hassan MM, Li H, Chen Q. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:405-412. [PMID: 30170175 DOI: 10.1016/j.saa.2018.08.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 05/25/2023]
Abstract
With increased concerns on milk safety issues, the development of a simple and sensitive method to detect 2,4-dichlorophenoxyacetic acid (2,4-D), a common contaminant in milk, becomes relevant in safeguarding human health threats that results from its consumption. Surface-enhanced Raman spectroscopy (SERS) shows excellent ability for various targets analysis but its usage for rapid and accurate determination of analyte via SERS presents challenges. This study attempted the quantification of 2,4-dichlorophenoxyacetic acid (2,4-D) residue in milk using a novel SERS active substrate- decorated silica films with Au nanoparticles (Au NPs@ silica) coupled to chemometric algorithms. Au NPs@ silica composite was synthesized as a SERS sensor through self-assembly. Thereafter, the SERS spectrum of 2,4-D extract from milk with different concentrations based on the developed SERS sensor was collected and the spectra were analyzed by partial least squares (PLS), and variable selection algorithms - genetic algorithm-PLS (GA-PLS), competitive-adaptive reweighted sampling-PLS (CARS-PLS) and ant colony optimization-PLS (ACO-PLS), to develop quantitative models for 2,4-D prediction. The results obtained showed that the CARS-PLS model gave the optimum result with LOD of 0.01 ng/mL realized and a determination coefficient in the prediction set of (RP) = 0.9836 within a linear range of 10-2 to 106 ng/mL was achieved. Au NPs@ silica SERS sensor combined with CARS-PLS may be employed for rapid quantification of 2,4-D extract from milk towards its quality and safety monitoring.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Felix Y H Kutsanedzie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
14
|
Wang H, Zhang B, Zhao F, Zeng B. One-Pot Synthesis of N-Graphene Quantum Dot-Functionalized I-BiOCl Z-Scheme Cathodic Materials for "Signal-Off" Photoelectrochemical Sensing of Chlorpyrifos. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35281-35288. [PMID: 30239195 DOI: 10.1021/acsami.8b12979] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A Z-scheme I-BiOCl/N-GQD (i.e., nitrogen-doped graphene quantum dot) heterojunction was prepared by a one-pot precipitation method at room temperature. The doped iodine decreased the band gap of BiOCl, the introduced N-GQDs enhanced light harvesting and prolonged the photogenerated electron lifetime, and the resultant Z-scheme heterojunction promoted the spatial separation of interfacial charges. Thus, the composite showed high photoelectrochemical activity and a big cathodic photocurrent signal. On the basis of the coordination of chlorpyrifos with surface Bi(III) of the composite, a cathodic photoelectrochemical sensor was constructed for the selective detection of chlorpyrifos. In this case, chlorpyrifos decreased the lifetime of photogenerated electrons, so the photocurrent became small. Furthermore, the photocurrent changed and the logarithm of chlorpyrifos concentration presented a linear relationship. The linear range was 0.3-80 ng mL-1, and the limit of detection was estimated to be 0.01 ng mL-1 (defined as S/N = 3). The present strategy can also be used for the design and fabrication of other PEC sensors suitable for different analytes.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Bihong Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
15
|
Hua MZ, Feng S, Wang S, Lu X. Rapid detection and quantification of 2,4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers-surface-enhanced Raman spectroscopy. Food Chem 2018; 258:254-259. [PMID: 29655731 DOI: 10.1016/j.foodchem.2018.03.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/15/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
We report the development of a molecularly imprinted polymers-surface-enhanced Raman spectroscopy (MIPs-SERS) method for rapid detection and quantification of a herbicide residue 2,4-dichlorophenoxyacetic acid (2,4-D) in milk. MIPs were synthesized via bulk polymerization and utilized as solid phase extraction sorbent to selectively extract and enrich 2,4-D from milk. Silver nanoparticles were synthesized to facilitate the collection of SERS spectra of the extracts. Based on the characteristic band intensity of 2,4-D (391 cm-1), the limit of detection was 0.006 ppm and the limit of quantification was 0.008 ppm. A simple logarithmic working range (0.01-1 ppm) was established, satisfying the sensitivity requirement referring to the maximum residue level of 2,4-D in milk in both Europe and North America. The overall test of 2,4-D for each milk sample required only 20 min including sample preparation. This MIPs-SERS method has potential for practical applications in detecting 2,4-D in agri-foods.
Collapse
Affiliation(s)
- Marti Z Hua
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Shaolong Feng
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Wang C, Ye X, Wang Z, Wu T, Wang Y, Li C. Molecularly Imprinted Photo-electrochemical Sensor for Human Epididymis Protein 4 Based on Polymerized Ionic Liquid Hydrogel and Gold Nanoparticle/ZnCdHgSe Quantum Dots Composite Film. Anal Chem 2017; 89:12391-12398. [DOI: 10.1021/acs.analchem.7b03486] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Caiyun Wang
- Key
Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission,
College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiaoxue Ye
- Key
Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission,
College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhengguo Wang
- Institute
of Food Science and Engineering Technology, Hezhou University, Hezhou, Guangxi 542899, China
| | - Tsunghsueh Wu
- Department
of Chemistry, University of Wisconsin—Platteville, 1 University Plaza, Platteville, Wisconsin 53818-3099, United States
| | - Yanying Wang
- Key
Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission,
College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Chunya Li
- Key
Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission,
College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
17
|
Yan P, Xu L, Cheng X, Qian J, Li H, Xia J, Zhang Q, Hua M, Li H. Photoelectrochemical monitoring of phenol by metallic Bi self-doping BiOI composites with enhanced photoelectrochemical performance. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Zhang F, Zhang P, Wu Q, Xiong W, Kang Q, Shen D. Impedance response of photoelectrochemical sensor and size-exclusion filter and catalytic effects in Mn3(BTC)2/g-C3N4/TiO2 nanotubes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar small-molecule detection directly in aqueous samples. Biosens Bioelectron 2017; 99:244-250. [PMID: 28772227 DOI: 10.1016/j.bios.2017.07.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022]
Abstract
Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the selective determination of a prototype small-molecule analyte of environmental concern, 2,4-dichlorophenoxyacetic acid or 2,4-D, at nanomolar concentration directly in water samples. A tailor-made fluorescent indicator cross-linker was thus designed that translates the binding event directly into an enhanced fluorescence signal. The phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles following a RAFT (reversible addition-fragmentation chain transfer) polymerization protocol. While the indicator cross-linker outperformed its corresponding monomer twin, establishment of a phase-transfer protocol was essential to guarantee that the hydrogen bond-mediated signalling mechanism between the urea binding site on the indicator cross-linker and the carboxylate group of the analyte was still operative upon real sample analysis. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phase-transfer assay, extracting the analyte from aqueous sample droplets into the organic phase that contains the sensor particles. Real-time fluorescence determination of 2,4-D down to 20nM was realized with the system and applied for the analysis of various surface water samples collected from different parts of the world.
Collapse
|
20
|
Liu M, Ding X, Yang Q, Wang Y, Zhao G, Yang N. A pM leveled photoelectrochemical sensor for microcystin-LR based on surface molecularly imprinted TiO 2@CNTs nanostructure. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:309-320. [PMID: 28273581 DOI: 10.1016/j.jhazmat.2017.02.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/21/2017] [Accepted: 02/18/2017] [Indexed: 05/14/2023]
Abstract
A simple and highly sensitive photoelectrochemical (PEC) sensor towards Microcystin-LR (MC-LR), a kind of typical cyanobacterial toxin in water samples, was developed on a surface molecular imprinted TiO2 coated multiwalled carbon nanotubes (MI-TiO2@CNTs) hybrid nanostructure. It was synthesized using a feasible two-step sol-gel method combining with in situ surface molecular imprinting technique (MIT). With a controllable core-shell tube casing structure, the resultant MI-TiO2@CNTs are enhanced greatly in visible-light driven response capacity. In comparison with the traditional TiO2 (P25) and non-imprinted (NI-)TiO2@CNTs, the MI-TiO2@CNTs based PEC sensor showed a much higher photoelectric oxidation capacity towards MC-LR. Using this sensor, the determination of MC-LR was doable in a wide linear range from 1.0pM to 3.0nM with a high photocurrent response sensitivity. An outstanding selectivity towards MC-LR was further achieved with this sensor, proven by simultaneously monitoring 100-fold potential co-existing interferences. The superiority of the obtained MC-LR sensor in sensitivity and selectivity is mainly attributed to the high specific surface area and excellent photoelectric activity of TiO2@CNTs heterojunction structure, as well as the abundant active recognition sites on its functionalized molecular imprinting surface. A promising PEC analysis platform with high sensitivity and selectivity for MC-LR has thus been provided.
Collapse
Affiliation(s)
- Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Xue Ding
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Qiwei Yang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Yu Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China.
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Paul-Bonatz Str. 9-11, Siegen 57076, Germany.
| |
Collapse
|
21
|
Yang X, Li X, Zhang L, Gong J. Electrospun template directed molecularly imprinted nanofibers incorporated with BiOI nanoflake arrays as photoactive electrode for photoelectrochemical detection of triphenyl phosphate. Biosens Bioelectron 2017; 92:61-67. [DOI: 10.1016/j.bios.2017.01.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
22
|
Yan P, Xu L, Xia J, Huang Y, Qiu J, Xu Q, Zhang Q, Li H. Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites. Talanta 2016; 156-157:257-264. [DOI: 10.1016/j.talanta.2016.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 12/31/2022]
|
23
|
Fang T, Yang X, Zhang L, Gong J. Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:106-113. [PMID: 27017396 DOI: 10.1016/j.jhazmat.2016.03.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
A rapid and highly sensitive photoelectrochemical (PEC) method has been proposed for the determination of trace amounts of chromium in water samples under visible-light irradiation. Here, a unique nanostructured hybrid of formate anion incorporated graphitic carbon nitride (F-g-C3N4) is smartly integrated with a Cr(VI) ion-imprinted polymer (IIP) as a photoactive electrode (denoted as IIP@F-g-C3N4). The nanohybrid of F-g-C3N4 exhibits an enhanced charge separation with substantially improved PEC responses versus g-C3N4. The newly designed IIP@F-g-C3N4 PEC sensor exhibits high sensitivity and selectivity for the determination of Cr(VI) because it offers efficient photogenerated electron reduction toward Cr(VI). The PEC analysis is highly linear over Cr(VI) concentrations ranging from 0.01 to 100.00ppb with a detection limit of 0.006ppb (S/N=3). Our approach can be used to detect Cr(VI), Cr(III) and the total chromium level in aqueous solution through oxidation of Cr(III) to Cr(VI) and the determination of the total chromium as Cr(VI). In practical applications, this low-cost and sensitive assay has been successfully applied for speciation determination of chromium in environmental water samples.
Collapse
Affiliation(s)
- Tian Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiaomin Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
24
|
Carbon paste electrodes modified with various carbonaceous materials for the determination of 2,4-dichlorophenoxyacetic acid by differential pulse voltammetry. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.01.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Gong J, Fang T, Peng D, Li A, Zhang L. A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI–BiOI composite. Biosens Bioelectron 2015; 73:256-263. [DOI: 10.1016/j.bios.2015.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/30/2022]
|