1
|
Jiang Q, Ji Y, Zheng T, Li X, Xia C. The Nexus of Innovation: Electrochemically Synthesizing H 2O 2 and Its Integration with Downstream Reactions. ACS MATERIALS AU 2024; 4:133-147. [PMID: 38496047 PMCID: PMC10941294 DOI: 10.1021/acsmaterialsau.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 03/19/2024]
Abstract
Hydrogen peroxide (H2O2) represents a chemically significant oxidant that is prized for its diverse applicability across various industrial domains. Recent innovations have shed light on the electrosynthesis of H2O2 through two-electron oxygen reduction reactions (2e- ORR) or two-electron water oxidation reactions (2e- WOR), processes that underscore the attractive possibility for the on-site production of this indispensable oxidizing agent. However, the translation of these methods into practical utilization within chemical manufacturing industries remains an aspiration rather than a realized goal. This Perspective intends to furnish a comprehensive overview of the latest advancements in the domain of coupled chemical reactions with H2O2, critically examining emergent strategies that may pave the way for the development of new reaction pathways. These pathways could enable applications that hinge on the availability and reactivity of H2O2, including, but not limited to the chemical synthesis coupled with H2O2 and waste water treatment byFenton-like reactions. Concurrently, the Perspective acknowledges and elucidates some of the salient challenges and opportunities inherent in the coupling of electrochemically generated H2O2, thereby providing a scholarly analysis that might guide future research.
Collapse
Affiliation(s)
- Qiu Jiang
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze
Delta Region Institute (Huzhou), University
of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, People’s
Republic of China
| | - Yuan Ji
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Tingting Zheng
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Xu Li
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - Chuan Xia
- School
of Materials and Energy, University of Electronic
Science and Technology of China, Chengdu 611731, People’s Republic of China
- Yangtze
Delta Region Institute (Huzhou), University
of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, People’s
Republic of China
| |
Collapse
|
2
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
3
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tiandi Wu
- Department of Chemistry Washington University St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry Washington University St. Louis MO 63130 USA
| |
Collapse
|
4
|
Wu T, Moeller KD. Organic Electrochemistry: Expanding the Scope of Paired Reactions. Angew Chem Int Ed Engl 2021; 60:12883-12890. [PMID: 33768678 DOI: 10.1002/anie.202100193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Paired electrochemical reactions allow the optimization of both atom and energy economy of oxidation and reduction reactions. While many paired electrochemical reactions take advantage of perfectly matched reactions at the anode and cathode, this matching of substrates is not necessary. In constant current electrolysis, the potential at both electrodes adjusts to the substrates in solution. In principle, any oxidation reaction can be paired with any reduction reaction. Various oxidation reactions conducted on the anodic side of the electrolysis were paired with the generation and use of hydrogen gas at the cathode, showing the generality of the anodic process in a paired electrolysis and how the auxiliary reaction required for the oxidation could be used to generate a substrate for a non-electrolysis reaction. This is combined with variations on the cathodic side of the electrolysis to complete the picture and illustrate how oxidation and reduction reactions can be combined.
Collapse
Affiliation(s)
- Tiandi Wu
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| |
Collapse
|
5
|
Marken F, Cresswell AJ, Bull SD. Recent Advances in Paired Electrosynthesis. CHEM REC 2021; 21:2585-2600. [PMID: 33834595 DOI: 10.1002/tcr.202100047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/31/2021] [Indexed: 11/08/2022]
Abstract
Progress in electroorganic synthesis is linked to innovation of new synthetic reactions with impact on medicinal chemistry and drug discovery and to the desire to minimise waste and to provide energy-efficient chemical transformations for future industrial processes. Paired electrosynthetic processes that combine the use of both anode and cathode (convergent or divergent) with minimal (or without) intentionally added electrolyte or need for additional reagents are of growing interest. In this overview, recent progress in developing paired electrolytic reactions is surveyed. The discussion focuses on electrosynthesis technology with proven synthetic value for the preparation of small molecules. Reactor types are contrasted and the concept of translating light-energy driven photoredox reactions into paired electrolytic reactions is highlighted as a newly emerging trend.
Collapse
Affiliation(s)
- Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, BA27AY, Bath, UK
| | | | - Steven D Bull
- Department of Chemistry, University of Bath, Claverton Down, BA27AY, Bath, UK
| |
Collapse
|
6
|
|
7
|
Wu T, Nguyen BH, Daugherty MC, Moeller KD. Paired Electrochemical Reactions and the On-Site Generation of a Chemical Reagent. Angew Chem Int Ed Engl 2019; 58:3562-3565. [DOI: 10.1002/anie.201900343] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Tiandi Wu
- Department of Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| | - Bichlien H. Nguyen
- Department of Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
- Current address: Microsoft Research; Redmond WA, 98052 USA
| | - Michael C. Daugherty
- Department of Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| |
Collapse
|
8
|
Wu T, Nguyen BH, Daugherty MC, Moeller KD. Paired Electrochemical Reactions and the On-Site Generation of a Chemical Reagent. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900343] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tiandi Wu
- Department of Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| | - Bichlien H. Nguyen
- Department of Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
- Current address: Microsoft Research; Redmond WA, 98052 USA
| | - Michael C. Daugherty
- Department of Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| | - Kevin D. Moeller
- Department of Chemistry; Washington University in St. Louis; St. Louis MO 63130 USA
| |
Collapse
|
9
|
Vianello C, Piccolo D, Lorenzetti A, Salzano E, Maschio G. Study of Soybean Oil Epoxidation: Effects of Sulfuric Acid and the Mixing Program. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiara Vianello
- Dipartimento di Ingegneria Industriale, Università di Padova, Via F. Marzolo 9, 35131 Padova, Italy
| | - Damiano Piccolo
- Dipartimento di Ingegneria Industriale, Università di Padova, Via F. Marzolo 9, 35131 Padova, Italy
| | - Alessandra Lorenzetti
- Dipartimento di Ingegneria Industriale, Università di Padova, Via F. Marzolo 9, 35131 Padova, Italy
| | - Ernesto Salzano
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Alma Mater Studiorum—Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giuseppe Maschio
- Dipartimento di Ingegneria Industriale, Università di Padova, Via F. Marzolo 9, 35131 Padova, Italy
| |
Collapse
|