1
|
Lv F, Chen J, Wan Y, Si J, Song M, Zhu F, Du S, Shang Y, Man T, Zhu L, Ren K, Piao Y, Zhu C, Deng SY. Amplification of an Electrochemiluminescence-Emissive Aptamer into DNA Nanotags for Sensitive Fecal Calprotectin Determination. Anal Chem 2023; 95:18564-18571. [PMID: 38060825 DOI: 10.1021/acs.analchem.3c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The precision additive manufacturing and tessellated multitasking out of the structural DNA nanotechnology enable a configurable expression of densified electrochemiluminescent (ECL) complexes, which would streamline the bioconjugation while multiplying signals. Herein, a completely DNA-scaffold ECL "polyploid" was replicated out via the living course of rolling circle amplification. The amplicon carried the aptameric sequences of ZnPPIX/TSPP porphyrin as photoreactive centers that rallied at periodical intervals of the persistent extension into a close-packed nanoflower, ZnPDFI/II. Both microscopies and electrophoresis proved the robust nesting of guests at their deployed gene loci, while multispectral comparisons among cofactor substituents pinpointed the pivotal roles of singlet seclusion and Zn2+-chelation for the sake of intensive ECL irradiation. The adversity-resilient hydrogel texture made lipoidal filmogens as porphyrinic ECL prerequisites to be of no need at all, thus not only simplifying assay flows but also inspiring an in situ labeling plan. Upon bioprocessing optimization, an enriched probe ZnPDFIII was further derived that interpolated the binding motif related to calprotectin as validated by molecular docking and affinity titration. With it being a strongly indicative marker of inflammatory bowel disease (IBD), a competitive ECL aptasensing strategy was contrived, managing a signal-on and sensitive detection in mild conditions with a subnanogram-per-milliliter limit of detection by 2 orders of magnitude lower than the standard method as well as a comparable accuracy in clinical stool sample testing. Distinct from those conventional chemophysical rebuilding routes, this de novo biosynthetic fusion demonstrated a promising alternative toward ECL-source bioengineering, which may intrigue vibrant explorations of other ECL-shedding fabrics and, accordingly, a new bioanalytic mode downstream.
Collapse
Affiliation(s)
- Fujin Lv
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meiyan Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fulin Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Songyuan Du
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuzhe Shang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhao Piao
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Sheng-Yuan Deng
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Sensitive determination of benzo(a)pyrene in vegetable oils based on the electrochemiluminescence quenching of ruthenium (II) dipyrido[3,2-a:2′,3′-c]phenazine complex. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
3
|
Xu T, Xu P, Xu G, Liu M, Zhu Y. A Signal Amplification Strategy Using ATP as a Co‐Reaction Accelerator for the Electrochemiluminescence of Ru(bpy)
3
2+
/HEPES System and Detection of Iodide Anions**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tingting Xu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Panpan Xu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Guilin Xu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Mengyao Liu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Yinggui Zhu
- Anhui Key Laboratory of Chemo/Biosensing College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| |
Collapse
|