1
|
Gao S, Fan J, Cui K, Wang Z, Huang T, Tan Z, Niu C, Luo W, Chao Z. Synthesis of FeOOH/Zn(OH) 2/CoS Ferromagnetic Nanocomposites and the Enhanced Mechanism of Magnetic Field for Their Electrochemical Performances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308212. [PMID: 38100280 DOI: 10.1002/smll.202308212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Indexed: 12/17/2023]
Abstract
The FeOOH/Zn(OH)2/CoS (FZC) nanocomposites are synthesized and show the outstanding electrochemical properties in both supercapacitor and catalytic hydrogen production. The specific area capacitance reaches 17.04 F cm-2, which is more than ten times higher than that of FeOOH/Zn(OH)2 (FZ) substrate: 1.58 F cm-2). FZC nanocomposites also exhibit the excellent cycling stability with an initial capacity retention rate of 93.6% after 10 000 long-term cycles. The electrolytic cell (FZC//FZC) assembled with FZC as both anode and cathode in the UOR (urea oxidation reaction)|| HER (hydrogen evolution reaction) coupled system requires a cell voltage of only 1.453 V to drive a current density of 10 mA cm-2. Especially, the electrochemical performances of FZC nanocomposites are enhanced in magnetic field, and the mechanism is proposed based on Stern double layer model at electrode-electrolyte interface (EEI). More electrolyte ions reach the surface of FZC electrode material under Kelvin force, moreover, the warburg impedance of FZC nanocomposites decrease under magnetic field action, which results in the enhanced behaviors for both the energy storage and urea oxidation reaction .
Collapse
Affiliation(s)
- Shanqiang Gao
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Jincheng Fan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Kexin Cui
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zhihao Wang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Ting Huang
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zicong Tan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Chaoqun Niu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Wenbin Luo
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zisheng Chao
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| |
Collapse
|
2
|
Liang Z, Tian W, Liu Y, Du Y, Zhang W, Lin L, Chen M, Cao D. Preparation of Co
3
O
4
Electrodes with Different Morphologies for the Investigation of Magnetic Response in Hybrid Capacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhiwei Liang
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Wensheng Tian
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Yuan Liu
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Yuanzhen Du
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Wenxin Zhang
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Lihua Lin
- Department of Physics Fuzhou University Fuzhou 350002 P.R.China
| | - Mingming Chen
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| | - Dawei Cao
- School of Physics and Electronic Engineering Jiangsu University Zhenjiang 212013 P.R.China
| |
Collapse
|
3
|
Yu H, Song YC, Bae BU, Li J, Jang SH. Electrostatic Fields Promote Methanogenesis More than Polarized Bioelectrodes in Anaerobic Reactors with Conductive Materials. ACS OMEGA 2021; 6:29703-29712. [PMID: 34778642 PMCID: PMC8582064 DOI: 10.1021/acsomega.1c04108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Direct interspecies electron transfer (DIET) is a breakthrough that can surpass the limitations of anaerobic digestion. Conductive materials and polarized bioelectrodes are known to induce DIET for methane production but are still challenging to apply at a field scale. Herein, compared to polarized bioelectrodes, electrostatic fields that promote DIET were investigated in an anaerobic reactor with conductive materials. As a conductive material, activated carbon enriched its surface with electroactive microorganisms to induce DIET (cDIET). cDIET improved the methane yield to 254.6 mL/g CODr, compared to the control. However, polarized bioelectrodes induced electrode-mediated DIET and biological DIET (bDIET), in addition to cDIET, improving the methane yield to 310.7 mL/g CODr. Electrostatic fields selectively promoted bDIET and cDIET for further methane production compared to the polarized bioelectrodes. As the contribution of DIET increased, the methane yield increased, and the substrate residue decreased, resulting in a significant improvement in methane production.
Collapse
Affiliation(s)
- Hanchao Yu
- Department
of Environmental Engineering, Korea Maritime
and Ocean University, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department
of Environmental Engineering, Korea Maritime
and Ocean University, Busan 49112, Republic of Korea
| | - Byung-Uk Bae
- Department
of Environmental Engineering, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jun Li
- Institute
of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Seong-Ho Jang
- Department
of Bio-Environmental Energy, Pusan National
University, Miryang 50463, Republic of Korea
| |
Collapse
|
4
|
High performance magnetic pseudocapacitors - Direct correlation between specific capacitance and diffusion coefficients. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Costa CM, Merazzo KJ, Gonçalves R, Amos C, Lanceros-Méndez S. Magnetically active lithium-ion batteries towards battery performance improvement. iScience 2021; 24:102691. [PMID: 34466780 PMCID: PMC8387573 DOI: 10.1016/j.isci.2021.102691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lithium-ion batteries (LIBs) are currently the fastest growing segment of the global battery market, and the preferred electrochemical energy storage system for portable applications. Magnetism is one of the forces that can be applied improve performance, since the application of magnetic fields influences electrochemical reactions through variation of electrolyte properties, mass transportation, electrode kinetics, and deposits morphology. This review provides a description of the magnetic forces present in electrochemical reactions and focuses on how those forces may be taken advantage of to influence the LIBs components (electrolyte, electrodes, and active materials), improving battery performance. The different ways that magnetic forces can interact with LIBs components are discussed, as well as their influence on the electrochemical behavior. The suitable control of these forces and interactions can lead to higher performance LIBs structures and to the development of innovative concepts.
Collapse
Affiliation(s)
- Carlos M. Costa
- Centre of Physics, University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Karla J. Merazzo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Renato Gonçalves
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Charles Amos
- INL- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Wang FM, Kuo YL, Huang LS, Ramar A, Su CH. Fabrication of in operando, self-growing, core-shell solid electrolyte interphase on LiFePO4 electrodes for preventing undesirable high-temperature effects in Li-ion batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Qin G, Duan J, Yang Y, Liu F. Magnetic Field Facilitated Resilient Chain-like Fe 3O 4/C/Red P with Superior Sodium Storage Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6441-6452. [PMID: 29370520 DOI: 10.1021/acsami.7b17341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Red phosphorus (P) has recently attracted lots of interest due to its extraordinary theoretical capacity of 2596 mAh g-1 in sodium-ion batteries (SIBs). However, it is challenging to solve the stability in the preparation process, while enhancing its low conductivity and solving the structural degradation caused by the enormous volume expansion (>490%) during cycling have become the targeted pursuits. Here, we creatively introduced the magnetic stimuli source to solve both of the preparation and the volume swelling force issues. In the precedence of magnetic field, the increased pressure in the sample room drives the homogeneous red P particles to finely deposit on the surface of Fe3O4/C. The chain-like Fe3O4/C/red P was successfully prepared assisted by the magnetic field. Simultaneously, considering that the speeded up movements for both electrons and sodium ions depended on Lorentz force, the electrochemical performance of such anode material is optimized by tuning the arrays in collector. It is noted that the nanostructure is elastically rearranged for the resistance of volume swelling force. Compared with the single Fe3O4/C/red P particles, for the magnetic fabricated Fe3O4/C/P chain structure, the electrostatic potential for reconstructing the chain-like Fe3O4/C/P is the largest. Such configured chain-like anode material exhibits an extraordinary cyclic performance and superior rate capability (692 mAh g-1 at 2000 mA g-1). The magnetic stimuli source bridges both the preparation optimization and the electrochemical performance enhancements for the red P based anode materials.
Collapse
Affiliation(s)
- Guohui Qin
- College of Chemical Engineering, Qingdao University of Science and Technology , Qingdao 266042, Shandong, China
| | - Jingying Duan
- Department of Chemical Engineering and Technology, Tianjin University , Tianjin 300350, China
| | - Yuchen Yang
- Department of Chemical Engineering and Technology, Tianjin University , Tianjin 300350, China
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology , Qingdao 266042, Shandong, China
| |
Collapse
|