1
|
Zahid R, Abdul Karim MR, Khan FS, Marwat MA. Elucidating the performance of hexamethylene tetra-amine interlinked bimetallic NiCo-MOF for efficient electrochemical hydrogen and oxygen evolution. RSC Adv 2024; 14:13837-13849. [PMID: 38681836 PMCID: PMC11046448 DOI: 10.1039/d4ra00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Bimetallic metal-organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nanostructure as a potent bifunctional electrocatalyst with superior performance for overall water splitting in alkaline environments. The structural, morphological, and electrochemical properties of the as-synthesized bifunctional catalyst were examined thoroughly before analyzing its behavior towards electrochemical water splitting. The HMT-based NiCo-MOF demonstrated small overpotential values of 274 mV and 330 mV in reaching a maximum current density of 30 mA cm-2 for hydrogen and oxygen evolution mechanisms, respectively. The Tafel parameter also showed favorable HER/OER reaction kinetics, with slopes of 78 mV dec-1 and 86 mV dec-1 determined during the electrochemical evaluation. Remarkably, the NiCo-HMT electrode exhibited a double-layer capacitance of 4 mF cm-2 for hydrogen evolution and 23 mF cm-2 for oxygen evolution, while maintaining remarkable stability even after continuous operation for 20 hours. This research offers a valuable blueprint for implementing a cost-effective and durable MOF-based bifunctional catalytic system that has proven to be effective for complete water splitting. Decomposition of water under higher current densities is crucial for effective long-term generation and commercial consumption of hydrogen.
Collapse
Affiliation(s)
- Rida Zahid
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Pakhtunkhwa Pakistan
| | - Muhammad Ramzan Abdul Karim
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan +92 (0938) 281026
| | - Fahd Sikandar Khan
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Pakhtunkhwa Pakistan
| | - Mohsin Ali Marwat
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi 23640 Khyber Pakhtunkhwa Pakistan +92 (0938) 281026
| |
Collapse
|
2
|
Chiou TW, Hsu IJ, Li WL, Tung CY, Yang ZQ, Lee JF, Lin TW. Fluoride-incorporated cobalt-based electrocatalyst towards enhanced hydrogen evolution reaction. Chem Commun (Camb) 2022; 58:2746-2749. [PMID: 35119447 DOI: 10.1039/d1cc05375b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report an electrocatalyst, Co bases (metallic Co and Co(OH)2) with fluoride-incorporated CoO coating on the surface of (CoO-F/Co), was synthesized by the electro-deposition method. The porous network architecture of CoO-F/Co on the glassy carbon electrode exhibited an ultra-low overpotential of 15 mV, achieving the geometric current density of 10 mA cm-2 in 1.0 M KOH, which were comparable with the HER performance of numerous reported noble metal electrocatalysts. It is demonstrated that fluoride incorporation improved the electrodeposition particle size, electronic density, conductivity and hydrophilicity of CoO-F/Co the HER performance.
Collapse
Affiliation(s)
- Tzung-Wen Chiou
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, and Research and Development Centre for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Wei-Liang Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chi-Yen Tung
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Zhong-Qi Yang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Centre, Hsinchu, 30013, Taiwan
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
3
|
Liu Y, Vijayakumar P, Liu Q, Sakthivel T, Chen F, Dai Z. Shining Light on Anion-Mixed Nanocatalysts for Efficient Water Electrolysis: Fundamentals, Progress, and Perspectives. NANO-MICRO LETTERS 2022; 14:43. [PMID: 34981288 PMCID: PMC8724338 DOI: 10.1007/s40820-021-00785-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 05/12/2023]
Abstract
This review introduces recent advances of various anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, (oxy)hydroxides, and borides) for efficient water electrolysis applications in detail. The challenges and future perspectives are proposed and analyzed for the anion-mixed water dissociation catalysts, including polyanion-mixed and metal-free catalyst, progressive synthesis strategies, advanced in situ characterizations, and atomic level structure-activity relationship. Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world's carbon neutrality and future sustainable eco-society. Water-splitting is a constructive technology for unpolluted and high-purity H2 production, and a series of non-precious electrocatalysts have been developed over the past decade. To further improve the catalytic activities, metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting (e-DA) properties, while for anion doping, the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances. In this review, we summarize the recent developments of the many different anion-mixed transition metal compounds (e.g., nitrides, halides, phosphides, chalcogenides, oxyhydroxides, and borides/borates) for efficient water electrolysis applications. First, we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions. Furthermore, some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis. The rationales behind their enhanced electrochemical performances are discussed. Last but not least, the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.
Collapse
Affiliation(s)
- Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Paranthaman Vijayakumar
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Qianyi Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
4
|
Anantharaj S, Noda S, Jothi VR, Yi S, Driess M, Menezes PW. Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew Chem Int Ed Engl 2021; 60:18981-19006. [PMID: 33411383 PMCID: PMC8451938 DOI: 10.1002/anie.202015738] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 01/14/2023]
Abstract
Transition metal hydroxides (M-OH) and their heterostructures (X|M-OH, where X can be a metal, metal oxide, metal chalcogenide, metal phosphide, etc.) have recently emerged as highly active electrocatalysts for hydrogen evolution reaction (HER) of alkaline water electrolysis. Lattice hydroxide anions in metal hydroxides are primarily responsible for observing such an enhanced HER activity in alkali that facilitate water dissociation and assist the first step, the hydrogen adsorption. Unfortunately, their poor electronic conductivity had been an issue of concern that significantly lowered its activity. Interesting advancements were made when heterostructured hydroxide materials with a metallic and or a semiconducting phase were found to overcome this pitfall. However, in the midst of recently evolving metal chalcogenide and phosphide based HER catalysts, significant developments made in the field of metal hydroxides and their heterostructures catalysed alkaline HER and their superiority have unfortunately been given negligible attention. This review, unlike others, begins with the question of why alkaline HER is difficult and will take the reader through evaluation perspectives, trends in metals hydroxides and their heterostructures catalysed HER, an understanding of how alkaline HER works on different interfaces, what must be the research directions of this field in near future, and eventually summarizes why metal hydroxides and their heterostructures are inevitable for energy-efficient alkaline HER.
Collapse
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Suguru Noda
- Department of Applied ChemistrySchool of Advanced Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
- Waseda Research Institute for Science and EngineeringWaseda University3-4-1 Okubo, Shinjuku-kuTokyo169-8555Japan
| | - Vasanth Rajendiran Jothi
- Department of Chemical EngineeringHanyang University222 Wangsimni-ro, Seongdong-guSeoul04763Republic of Korea
| | - SungChul Yi
- Department of Chemical EngineeringHanyang University222 Wangsimni-ro, Seongdong-guSeoul04763Republic of Korea
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| |
Collapse
|
5
|
Anantharaj S, Noda S, Jothi VR, Yi S, Driess M, Menezes PW. Strategies and Perspectives to Catch the Missing Pieces in Energy‐Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sengeni Anantharaj
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Suguru Noda
- Department of Applied Chemistry School of Advanced Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
- Waseda Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan
| | - Vasanth Rajendiran Jothi
- Department of Chemical Engineering Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - SungChul Yi
- Department of Chemical Engineering Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Republic of Korea
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
6
|
Xiang J, Zou W, Tang H. Nb-Doped nickel nitride-derived catalysts for electrochemical water splitting. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01085a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alkaline electrolyzer using Nb-doped nickel nitride-derived catalysts as electrodes for overall water splitting delivers 10 mA cm−2 at a low cell voltage of 1.61 V.
Collapse
Affiliation(s)
- Jiadong Xiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Wenjian Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Zheng P, Li M, Li Y, Zhang X, Chen J, Fang X, Liu Y, Yuan X, Dai X, Wang H. Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. NANOSCALE 2020; 12:9669-9679. [PMID: 32319487 DOI: 10.1039/d0nr01491e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Construction of an efficient bifunctional electrocatalyst through a rational interface-engineering strategy to optimize the adsorption energy of H* and OH* species at the atomic/molecular level is of great importance for water splitting. Although conventional NiFe layered double hydroxide (LDH) shows excellent performance for alkaline oxygen evolution reactions (OERs), it shows extremely poor activity toward hydrogen evolution reactions (HERs) due to weak hydrogen adsorption and sluggish kinetics. In this work, integration of sub-nanoscale Ru species with NiFe LDH can dramatically enhance the adsorption energy of H* and improve their HER kinetics. Besides, benefitting from the desired potential-induced strategy, the Ru-NiFe LDH interfaces will convert to RuO2-NiFe(OOH)x interfaces to optimize the adsorption energy of OH* to meet the requirement of strengthening the OER performance. Strikingly, the Ru-NiFe LDH-F/NF sample (NF: Ni foam) shows an excellent OER and HER performance with an overpotential of 230.0 mV and 115.6 mV at a current density of 10 mA cm-2, respectively, as well as outstanding durability. The overall water splitting device was fabricated by using Ru/NiFe LDH-F/NF as both the HER and OER electrode with a potential of 1.53 V to achieve a current density of 10 mA cm-2. In addition, the theoretical calculations demonstrated that the Ru-NiFe LDH interfaces could optimize the adsorption energy of H* and OH*. This study provides a new insight into the development of highly efficient bifunctional electrocatalysts for water electrolysis.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Peng Zheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Mingxuan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Yunrui Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Xu Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Yujie Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Xiaolin Yuan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Xiaoping Dai
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China.
| | - Hai Wang
- National Institute of Metrology, Beijing 100013, China
| |
Collapse
|
8
|
Zhang B, Zhu C, Wu Z, Stavitski E, Lui YH, Kim TH, Liu H, Huang L, Luan X, Zhou L, Jiang K, Huang W, Hu S, Wang H, Francisco JS. Integrating Rh Species with NiFe-Layered Double Hydroxide for Overall Water Splitting. NANO LETTERS 2020; 20:136-144. [PMID: 31774999 DOI: 10.1021/acs.nanolett.9b03460] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
NiFe-layered double hydroxide (LDH) is thought of as a promising bifunctional water-splitting catalyst, owing to its excellent performances for alkaline oxygen evolution reactions (OERs). However, it shows extremely poor activity toward hydrogen evolution reactions (HERs) due to the weak hydrogen adsorption. We demonstrated that the integration of Rh species and NiFe-LDH can dramatically improve its HER kinetics without sacrificing the OER performance. The Rh species were initially integrated into NiFe-LDH as oxidized dopants and metallic clusters (< 1 nm). In 1 M KOH electrolyte, an overpotential of 58 mV is needed to catalyze 10 mA cm-2 HER current density. Furthermore, this catalyst only requires 1.46 V to drive an electrolyzer at 10 mA cm-2. A strong interaction between metallic Rh clusters and NiFe hydroxide during the HER process is revealed. The theoretical calculation shows the Rh ions replace Fe ions as the major active sites that are responsible for OERs.
Collapse
Affiliation(s)
- Bowei Zhang
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
- Department of Chemistry , Yale University , New Haven , Connecticut 06511 , United States
- Energy Sciences Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Chongqin Zhu
- Department of Earth & Environmental Science , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Zishan Wu
- Department of Chemistry , Yale University , New Haven , Connecticut 06511 , United States
- Energy Sciences Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Eli Stavitski
- National Synchrotron Light Source II , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Yu Hui Lui
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Tae-Hoon Kim
- Ames National Laboratory, U.S. Department of Energy , Ames , Iowa 50011 , United States
| | - Huan Liu
- Department of Chemistry , Yale University , New Haven , Connecticut 06511 , United States
- Energy Sciences Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Ling Huang
- Department of Chemistry , Yale University , New Haven , Connecticut 06511 , United States
- Energy Sciences Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Xuechen Luan
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Lin Zhou
- Ames National Laboratory, U.S. Department of Energy , Ames , Iowa 50011 , United States
| | - Kun Jiang
- Joint Center for Artificial Photosynthesis , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Wenyu Huang
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Shan Hu
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Hailiang Wang
- Department of Chemistry , Yale University , New Haven , Connecticut 06511 , United States
- Energy Sciences Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Joseph S Francisco
- Department of Earth & Environmental Science , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
9
|
Lv J, Yang X, Li K, Chen X, Sun S, Zang HY, Chang YF, Wang YH, Li YG. Introduction of Mn(iii) to regulate the electronic structure of fluorine-doped nickel hydroxide for efficient water oxidation. NANOSCALE ADVANCES 2019; 1:4099-4108. [PMID: 36132091 PMCID: PMC9418579 DOI: 10.1039/c9na00535h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 06/15/2023]
Abstract
OER is the key step to increase the rate of water-splitting reaction. Design and construction of appropriate defects is an effective strategy to enhance catalytic activity. Mn has stronger e--e- repulsion by the local influence of its 3d orbital electrons. When Mn(iii) was successfully introduced into two dimensional F-doped Ni(OH)2, it can tune the surface electronic structure of the F-doped Ni(OH)2 to increase its oxygen deficiency content. In this work, the as-synthesized Mn and F co-doped Ni(OH)2-NF on Ni foam (Mn-F/Ni(OH)2-NF) shows remarkable oxygen evolution performance, exhibiting 233 mV overpotential at 20 mA cm-2, and the Tafel slope is 56.9 mV dec-1 in 1 M KOH. The performance is better than that of the same loading of IrO2 on Ni foam. Density functional theory (DFT) calculations further show that the introduction of oxygen defects can significantly improve the OER catalytic performance of Mn-F/Ni(OH)2-NF.
Collapse
Affiliation(s)
- Jiaqi Lv
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| | - Xiaoxuan Yang
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| | - Ke Li
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| | - Xinyu Chen
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| | - Sai Sun
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| | - Hong-Ying Zang
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| | - Ying-Fei Chang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| | - Yong-Hui Wang
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| | - Yang-Guang Li
- Key Lab of Polyoxometalate, Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University Changchun 130024 Jilin P. R. China
| |
Collapse
|
10
|
Li D, Zhang B, Li Y, Chen R, Hu S, Ni H. Boosting hydrogen evolution activity in alkaline media with dispersed ruthenium clusters in NiCo-layered double hydroxide. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
Zhang B, Jiang K, Wang H, Hu S. Fluoride-Induced Dynamic Surface Self-Reconstruction Produces Unexpectedly Efficient Oxygen-Evolution Catalyst. NANO LETTERS 2019; 19:530-537. [PMID: 30517786 DOI: 10.1021/acs.nanolett.8b04466] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The oxygen-evolution reaction (OER) is a key process in water-splitting systems, fuel cells, and metal-air batteries, but the development of highly active and robust OER catalyst by simple methods is a great challenge. Here, we report an in situ dynamic surface self-reconstruction that can dramatically improve the catalytic activity of electrocatalysts. A fluoride (F-)-incorporating NiFe hydroxide (NiFe-OH-F) nanosheet array was initially grown on Ni foam by a one-step hydrothermal method, which requires a 243 mV over-potential (η) to achieve a 10 mA cm-2 current density with a Tafel slope of 42.9 mV dec-1 in alkaline media. After the surface self-reconstruction induced by fluoride leaching under OER conditions, the surface of NiFe-OH-F was converted into highly mesoporous and amorphous NiFe oxide hierarchical structure, and the OER activity at η = 220 mV increases over 58-fold. The corresponding η at 10 mA cm-2 decreases to 176 mV with an extreme low Tafel slope of 22.6 mV dec-1; this performance is superior to that of the state-of-the-art OER electrocatalysts.
Collapse
Affiliation(s)
- Bowei Zhang
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Kun Jiang
- Rowland Institute , Harvard University , Cambridge , Massachusetts 02142 , United States
| | - Haotian Wang
- Rowland Institute , Harvard University , Cambridge , Massachusetts 02142 , United States
| | - Shan Hu
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
12
|
Zhang B, Zhang J, Tang X, Lui YH, Hu S. An investigation of Fe incorporation on the activity and stability of homogeneous (FexNi1-x)2P solid solutions as electrocatalysts for alkaline hydrogen evolution. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Zhang B, Lui YH, Gaur APS, Chen B, Tang X, Qi Z, Hu S. Hierarchical FeNiP@Ultrathin Carbon Nanoflakes as Alkaline Oxygen Evolution and Acidic Hydrogen Evolution Catalyst for Efficient Water Electrolysis and Organic Decomposition. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8739-8748. [PMID: 29446613 DOI: 10.1021/acsami.8b00069] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Efficiency of hydrogen evolution via water electrolysis is mainly impeded by the kinetically sluggish oxygen evolution reaction (OER). Thus, it is of great significance to develop highly active and stable OER catalyst for alkaline water electrolysis or to substitute the more kinetically demanding acidic OER with a facile electron-donating reaction such that OER is no longer the bottleneck half-reaction for either acidic or alkaline water electrolysis. Herein, the hierarchical Fe-Ni phosphide shelled with ultrathin carbon networks on Ni foam (FeNiP@C) is reported and shows exceptional OER activity and enhanced chemical stability in 1 M KOH. This unique electrode provides large active sites, facile electron transport pathways, and rapid gas release, resulting in a remarkable OER activity that delivers a current density of 100 mA/cm2 at an overpotential of 182 mV with a Tafel slope of 56 mV/dec. Combining the hydrogen evolution reaction with organic pollutant (methylene blue) oxidation, a multifunctional electrolyzer for simultaneous cost-effective hydrogen generation and organic pollutant decomposition in acid wastewater is proposed. Our strategies in this work provide attractive opportunities in energy- and environment-related fields.
Collapse
|