1
|
Fakayode OJ, Mohlala RL, Ratshiedana R, May BM, Ebenso EE, Feleni U, Nkambule TTI. Electrocatalytic oxidation of pyrrole on a quasi-reversible silver nanodumbbell particle surface for supramolecular porphyrin production. ChemistryOpen 2024; 13:e202300212. [PMID: 38350719 PMCID: PMC11230922 DOI: 10.1002/open.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Photoactive supramolecular porphyrin assemblies are attractive molecules for light-harvesting applications. This is due to their relatively non-toxicity, biological activities and charge and energy exchange characteristics. However, the extreme cost associated with their synthesis and requirements for toxic organic solvents during purification pose a challenge to the sustainability characteristics of their applications. This work presents the first report on the sustainable synthesis, spectroscopic and photophysical characterizations of a near-infrared (NIR) absorbing Ca(II)-meso-tetrakis (4-hydroxyphenyl)porphyrin using an electrolyzed pyrrole solution. The latter was obtained by cycling the pyrrole solution across the silver nanodumbbell particle surface at room temperature. The electrolyzed solution condensed readily with acidified p-hydroxybenzaldehyde, producing the targeted purple porphyrin. The non-electrolyzed pyrrole solution formed a green substance with significantly different optical properties. Remarkable differences were observed in the voltammograms of the silver nanodumbbell particles and those of the conventional gold electrode during the pyrrole cycling, suggesting different routes of porphyrin formation. The rationale behind these formations and the associated mechanisms were extensively discussed. Metalation with aqueous Ca2+ ion caused a Stokes shift of 38.75 eV. The current study shows the advantage of the electrochemical method towards obtaining sustainable light-harvesting porphyrin at room temperature without the need for high-energy-dependent conventional processes.
Collapse
Affiliation(s)
- Olayemi Jola Fakayode
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, 28 Pioneer, Avenue, Roodepoort, 1709, Johannesburg, South Africa
| | - Reagan L Mohlala
- Advanced Material Science Division, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg, South Africa
| | - Rudzani Ratshiedana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, 28 Pioneer, Avenue, Roodepoort, 1709, Johannesburg, South Africa
| | - Bambesiwe M May
- Advanced Material Science Division, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg, South Africa
| | - Eno E Ebenso
- Centre for Materials Science, College of Science, Engineering and Technology, University of South Africa, Florida Campus, 28 Pioneer Avenue, Roodepoort, 1709, Johannesburg, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, 28 Pioneer, Avenue, Roodepoort, 1709, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, 28 Pioneer, Avenue, Roodepoort, 1709, Johannesburg, South Africa
| |
Collapse
|
2
|
Wantulok J, Sokolova R, Degano I, Kolivoska V, Nycz JE, Fiedler J. Spectroelectrochemical Properties of 1,10‐Phenanthroline Substituted by Phenothiazine and Carbazole Redox‐active Units. ChemElectroChem 2021. [DOI: 10.1002/celc.202100835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jakub Wantulok
- Institute of Chemistry University of Silesia in Katowice ul. Szkolna 9 40-007 Katowice Poland
| | - Romana Sokolova
- Department Electrochemistry at the Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry University of Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Viliam Kolivoska
- Department Electrochemistry at the Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| | - Jacek E. Nycz
- Institute of Chemistry University of Silesia in Katowice ul. Szkolna 9 40-007 Katowice Poland
| | - Jan Fiedler
- Department Electrochemistry at the Nanoscale J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejškova 3 18223 Prague Czech Republic
| |
Collapse
|
4
|
Chen H, Shao S, Yu Y, Huang Y, Zhu X, Zhang S, Fan J, Yin GY, Chi B, Wan M, Mao C. A dual-responsive biosensor for blood lead detection. Anal Chim Acta 2019; 1093:131-141. [PMID: 31735206 DOI: 10.1016/j.aca.2019.09.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Simple and accurate detection of trace heavy metals in blood is very important. A novel dual-responsive electrochemical/fluorescent biosensor based on magnetic hyperbranched polyamide with heparin modification (MHPAM-H) for blood lead detection has been successfully developed. Upon conjugated with blood lead ions, dual-biosensor could not only display electrochemical signal but also fluorescence signal owing to the enriched amino groups, cavity structure, and good fluorescence properties of HPAM. Blood biocompatibility, construction of the dual-responsive biosensor, electrochemical/fluorescent detection of lead ions in water phase and blood condition, selectivity and stability of the dual-responsive biosensor were investigated in detail. The proposed dual-responsive biosensor displays good linear relationship (1.5 pM- 4.8 × 103 pM for electrochemical detection and 0.5 pM-4.8 × 103 pM for fluorescent detection) with low detection limit (4.4 pM for electrochemical detection and 1.0 pM for fluorescent detection) for blood lead, providing potential application for blood lead detection in the future.
Collapse
Affiliation(s)
- Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shuibin Shao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaotan Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shiyan Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Guo Yong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Erusappan J, Nachimuthu M, Cheruvary R. Proton Exchange Membrane Fuel‐Cell‐Based Amperometric H
2
Sensor with Pulsed Electrodeposited Electrodes Prepared Using an Ionic Liquid Electrolyte. ChemistrySelect 2019. [DOI: 10.1002/slct.201803482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jayanthi Erusappan
- Materials Chemistry & Metal Fuel Cycle GroupHomi Bhabha National InstituteIndira Gandhi Centre for Atomic Research Kalpakkam 603102 India
| | - Murugesan Nachimuthu
- Materials Chemistry & Metal Fuel Cycle GroupIndira Gandhi Centre for Atomic Research Kalpakkam 603102 India
| | - Ramesh Cheruvary
- Materials Chemistry & Metal Fuel Cycle GroupIndira Gandhi Centre for Atomic Research Kalpakkam 603102 India
| |
Collapse
|