1
|
Morlock S, Subramanian SK, Zouni A, Lisdat F. Closing the green gap of photosystem I with synthetic fluorophores for enhanced photocurrent generation in photobiocathodes. Chem Sci 2023; 14:1696-1708. [PMID: 36819875 PMCID: PMC9930989 DOI: 10.1039/d2sc05324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
One restriction for biohybrid photovoltaics is the limited conversion of green light by most natural photoactive components. The present study aims to fill the green gap of photosystem I (PSI) with covalently linked fluorophores, ATTO 590 and ATTO 532. Photobiocathodes are prepared by combining a 20 μm thick 3D indium tin oxide (ITO) structure with these constructs to enhance the photocurrent density compared to setups based on native PSI. To this end, two electron transfer mechanisms, with and without a mediator, are studied to evaluate differences in the behavior of the constructs. Wavelength-dependent measurements confirm the influence of the additional fluorophores on the photocurrent. The performance is significantly increased for all modifications compared to native PSI when cytochrome c is present as a redox-mediator. The photocurrent almost doubles from -32.5 to up to -60.9 μA cm-2. For mediator-less photobiocathodes, interestingly, drastic differences appear between the constructs made with various dyes. While the turnover frequency (TOF) is doubled to 10 e-/PSI/s for PSI-ATTO590 on the 3D ITO compared to the reference specimen, the photocurrents are slightly smaller since the PSI-ATTO590 coverage is low. In contrast, the PSI-ATTO532 construct performs exceptionally well. The TOF increases to 31 e-/PSI/s, and a photocurrent of -47.0 μA cm-2 is obtained. This current is a factor of 6 better than the reference made with native PSI in direct electron transfer mode and sets a new record for mediator-free photobioelectrodes combining 3D electrode structures and light-converting biocomponents.
Collapse
Affiliation(s)
- Sascha Morlock
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany .,Biophysics of Photosynthesis, Humboldt University of Berlin Philippstraße 13 10099 Berlin Germany
| | - Senthil K. Subramanian
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Athina Zouni
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Fred Lisdat
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| |
Collapse
|
2
|
Morlock S, Subramanian SK, Zouni A, Lisdat F. Bio-inorganic hybrid structures for direct electron transfer to photosystem I in photobioelectrodes. Biosens Bioelectron 2022; 214:114495. [DOI: 10.1016/j.bios.2022.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
|
3
|
Torabi N, Qiu X, López-Ortiz M, Loznik M, Herrmann A, Kermanpur A, Ashrafi A, Chiechi RC. Fullerenes Enhance Self-Assembly and Electron Injection of Photosystem I in Biophotovoltaic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11465-11473. [PMID: 34544234 PMCID: PMC8495901 DOI: 10.1021/acs.langmuir.1c01542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/06/2021] [Indexed: 06/02/2023]
Abstract
This paper describes the fabrication of microfluidic devices with a focus on controlling the orientation of photosystem I (PSI) complexes, which directly affects the performance of biophotovoltaic devices by maximizing the efficiency of the extraction of electron/hole pairs from the complexes. The surface chemistry of the electrode on which the complexes assemble plays a critical role in their orientation. We compared the degree of orientation on self-assembled monolayers of phenyl-C61-butyric acid and a custom peptide on nanostructured gold electrodes. Biophotovoltaic devices fabricated with the C61 fulleroid exhibit significantly improved performance and reproducibility compared to those utilizing the peptide, yielding a 1.6-fold increase in efficiency. In addition, the C61-based devices were more stable under continuous illumination. Our findings show that fulleroids, which are well-known acceptor materials in organic photovoltaic devices, facilitate the extraction of electrons from PSI complexes without sacrificing control over the orientation of the complexes, highlighting this combination of traditional organic semiconductors with biomolecules as a viable approach to coopting natural photosynthetic systems for use in solar cells.
Collapse
Affiliation(s)
- Nahid Torabi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Xinkai Qiu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Manuel López-Ortiz
- IBEC—Institut
de Bioenginyeria de Catalunya, The Barcelona
Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona 08028, Spain
- Network
Biomedical Research Center in Biomaterials, Bioengineering and Nanomedicine
(CIBER-BBN), Madrid 28029, Spain
| | - Mark Loznik
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Andreas Herrmann
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Ahmad Kermanpur
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ali Ashrafi
- Department
of Materials Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ryan C. Chiechi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
4
|
Morlock S, Subramanian SK, Zouni A, Lisdat F. Scalable Three-Dimensional Photobioelectrodes Made of Reduced Graphene Oxide Combined with Photosystem I. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11237-11246. [PMID: 33621059 DOI: 10.1021/acsami.1c01142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photobioelectrodes represent one of the examples where artificial materials are combined with biological entities to undertake semi-artificial photosynthesis. Here, an approach is described that uses reduced graphene oxide (rGO) as an electrode material. This classical 2D material is used to construct a three-dimensional structure by a template-based approach combined with a simple spin-coating process during preparation. Inspired by this novel material and photosystem I (PSI), a biophotovoltaic electrode is being designed and investigated. Both direct electron transfer to PSI and mediated electron transfer via cytochrome c from horse heart as redox protein can be confirmed. Electrode preparation and protein immobilization have been optimized. The performance can be upscaled by adjusting the thickness of the 3D electrode using different numbers of spin-coating steps during preparation. Thus, photocurrents up to ∼14 μA/cm2 are measured for 12 spin-coated layers of rGO corresponding to a turnover frequency of 30 e- PSI-1 s-1 and external quantum efficiency (EQE) of 0.07% at a thickness of about 15 μm. Operational stability has been analyzed for several days. Particularly, the performance at low illumination intensities is very promising (1.39 μA/cm2 at 0.1 mW/cm2 and -0.15 V vs Ag/AgCl; EQE 6.8%).
Collapse
Affiliation(s)
- Sascha Morlock
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Hochschulring 1, Wildau 15745, Germany
- Biophysics of Photosynthesis, Institute for Biology, Humboldt University of Berlin, Philippstraße 13, Berlin 10115, Germany
| | - Senthil K Subramanian
- Biophysics of Photosynthesis, Institute for Biology, Humboldt University of Berlin, Philippstraße 13, Berlin 10115, Germany
| | - Athina Zouni
- Biophysics of Photosynthesis, Institute for Biology, Humboldt University of Berlin, Philippstraße 13, Berlin 10115, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, Hochschulring 1, Wildau 15745, Germany
| |
Collapse
|
5
|
Wolfe KD, Dervishogullari D, Stachurski CD, Passantino JM, Kane Jennings G, Cliffel DE. Photosystem I Multilayers within Porous Indium Tin Oxide Cathodes Enhance Mediated Electron Transfer. ChemElectroChem 2019. [DOI: 10.1002/celc.201901628] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kody D. Wolfe
- Interdisciplinary Materials Science Program Vanderbilt University Nashville Tennessee 37235-1822 United States
| | - Dilek Dervishogullari
- Department of Chemistry Vanderbilt University Nashville Tennessee 37235-1822 United States
| | | | - Joshua M. Passantino
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee 37235-1822 United States
| | - G. Kane Jennings
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee 37235-1822 United States
| | - David E. Cliffel
- Department of Chemistry Vanderbilt University Nashville Tennessee 37235-1822 United States
| |
Collapse
|