1
|
Liu L. Charge-induced deformation of scanning electrolyte before contact. Faraday Discuss 2024. [PMID: 39485095 DOI: 10.1039/d4fd00147h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The recent developments in scanning electrochemical probe techniques focus on the strategy of scanning the electrolyte. For example, scanning electrochemical cell microscopy (SECCM) is based on holding the electrolyte in a glass capillary, while scanning gel electrochemical microscopy (SGECM) immobilizes the gel electrolyte on micro-disk electrodes or etched metal wires. In both SECCM and SGECM, the first and essential step is to bring the electrolyte probe into contact with the sample, which is very often achieved by current feedback with a constant applied potential between the probe and the sample. This work attempts to theoretically analyse the deformation of the electrolyte during this approaching process. For a liquid electrolyte in SECCM, surface tension is considered to counterbalance the gravity and electrostatic force in 2D cylindrical coordinates with axial symmetry. The deformation at equilibrium is solved under certain conditions. For a gel electrolyte, a viscoelastic gel is analysed with a simplified 1D geometry. Both equilibrium and dynamic approaching are considered. The results suggest that for both liquid and gel electrolytes, critical conditions exist for breaking the equilibrium. When the applied potential is higher or the distance is lower than the threshold, the force will not equilibrate and the electrolyte will deform until contact. The critical condition depends on the properties (surface tension for a liquid, elastic and viscous moduli for a gel) and geometry (radius of the capillary for a liquid, thickness for a gel) of the electrolyte. Prospects of further extending the work closer to real experimental scenarios, especially SGECM, are also discussed.
Collapse
Affiliation(s)
- Liang Liu
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), Université de Lorraine, CNRS, Nancy 54000, France.
| |
Collapse
|
2
|
Zhu MY, Bao YF, Geng HF, Zhao XJ, Cao MF, Chen HX, Wang JY, Zhang W, Wang X, Ren B. Micro Reference Electrode with an Ultrathin Ionic Path. Anal Chem 2024; 96:16109-16114. [PMID: 39360511 DOI: 10.1021/acs.analchem.4c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Reference electrode (RE) plays the core role in accurate potential control in electrochemistry. However, nanoresolved electrochemical characterization techniques still suffer from unstable potential control of pseudo-REs, because the commercial RE is too large to be used in the tiny electrochemical cell, and thus only pseudo-RE can be used. Therefore, microsized RE with a stable potential is urgently required to push the nanoresolved electrochemical measurements to a new level of accuracy and precision, but it is quite challenging to reproducibly fabricate such a micro RE until now. Here, we revisited the working mechanism of the metal-junction RE and clearly revealed the role of the ionic path between the metal wire and the borosilicate glass capillary to maintain a stable potential of RE. Based on this understanding, we developed a method to fabricate micro ultrastable-RE, where a reproducible ultrathin ionic path can form by dissolving a sandwiched sacrificial layer between the Pt wire and the capillary for the ion transfer. The potential of this new micro RE was almost the same as that of the commercial Ag/AgCl electrode, while the size is much smaller. Different from commercial REs that must be stored in the inner electrolyte, the new RE could be directly stored in air for more than one year without potential drift. Eventually, we successfully applied the micro RE in the electrochemical tip-enhanced Raman spectroscopy (EC-TERS) measurement to precisely control the potential of the working electrode, which makes it possible to compare the results from different laboratories and techniques to better understand the electrochemical interface at the nanoscale.
Collapse
Affiliation(s)
- Meng-Yuan Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hao-Fei Geng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Jiao Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao-Feng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hong-Xuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Yi Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Material of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Lai Z, Li D, Cai S, Liu M, Huang F, Zhang G, Wu X, Jin Y. Small-Area Techniques for Micro- and Nanoelectrochemical Characterization: A Review. Anal Chem 2023; 95:357-373. [PMID: 36625128 DOI: 10.1021/acs.analchem.2c04551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhaogui Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Dingshi Li
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Shuangyu Cai
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Min Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Feifei Huang
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| | - Guodong Zhang
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Xinyue Wu
- Beijing Institute of Space Launch Technology, Beijing 100076, China
| | - Ying Jin
- National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 102206, China
| |
Collapse
|
4
|
Zhao Z, Martino N, Tagliabue L, Minguzzi A, Vertova A. Facile preparation of robust and multipurpose microelectrodes based on injected epoxy resin. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Takahashi Y, Yamashita T, Takamatsu D, Kumatani A, Fukuma T. Nanoscale kinetic imaging of lithium ion secondary battery materials using scanning electrochemical cell microscopy. Chem Commun (Camb) 2020; 56:9324-9327. [PMID: 32671368 DOI: 10.1039/d0cc02865g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To visualize the electrochemical reactivity and obtain the diffusion coefficient of the anode of lithium-ion batteries, we used scanning electrochemical cell microscopy (SECCM) in a glovebox. SECCM provided the facet-dependent diffusion coefficient on a Li4Ti5O12 (LTO) thin-film electrode and detected the metastable crystal phase of LixFePO4.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | |
Collapse
|
11
|
Dang N, Etienne M, Walcarius A, Liu L. Scanning Gel Electrochemical Microscopy (SGECM): Lateral Physical Resolution by Current and Shear Force Feedback. Anal Chem 2020; 92:6415-6422. [PMID: 32233427 DOI: 10.1021/acs.analchem.9b05538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scanning gel electrochemical microscopy (SGECM) is a novel technique measuring local electrochemistry based on a gel probe. The gel probe, which is fabricated by electrodeposition of hydrogel on a microdisk electrode, immobilizes the electrolyte, and constitutes a two-electrode system upon contact with the sample. The contact area determines the lateral physical resolution of the measurement, and considering the soft nature of the gel it is essential to be well analyzed. In this work, the lateral physical resolution of SGECM is quantitatively studied from two aspects: (1) marking single sampling points by locally oxidizing Ag to AgCl and measuring their size; (2) line scan over reference samples with periodic topography and composition. The gel probe is approached to the sample by either current or shear force feedback, and the physical resolution of them is compared. For the optimal gel probe based on 25 μm diameter Pt disk electrode of Rg ≈ 2, the lateral physical resolution of SGECM at contact position is ca. 50 μm for current feedback and ca. 63 μm for shear force feedback. More importantly, the lateral physical resolution of SGECM can be flexibly tuned in the range of 14-78 μm by pulling or pressing the gel probe after touching the sample. In general, current feedback is more sensitive to gel-sample contact than shear force feedback. But the latter is more versatile, which is also applicable to nonconductive samples.
Collapse
Affiliation(s)
- Ning Dang
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), F-54000 Nancy, France
| | - Mathieu Etienne
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), F-54000 Nancy, France
| | - Alain Walcarius
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), F-54000 Nancy, France
| | - Liang Liu
- Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), F-54000 Nancy, France
| |
Collapse
|
12
|
Ino K, Ozawa F, Dang N, Hiramoto K, Hino S, Akasaka R, Nashimoto Y, Shiku H. Biofabrication Using Electrochemical Devices and Systems. ACTA ACUST UNITED AC 2020; 4:e1900234. [DOI: 10.1002/adbi.201900234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/01/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Fumisato Ozawa
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba Meguro‐ku Tokyo 153–8505 Japan
| | - Ning Dang
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement CNRS‐Université de Lorraine Villers‐lès‐Nancy 54600 France
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Shodai Hino
- Graduate School of Environmental Studies Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Rise Akasaka
- School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences Tohoku University 6‐3 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8578 Japan
| | - Hitoshi Shiku
- Graduate School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| |
Collapse
|