1
|
Ma T, Ren S, Wang Y, Yu H, Li L, Li X, Zhang L, Yu J, Zhang Y. Paper-based bipolar electrode electrochemiluminescence sensors for point-of-care testing. Biosens Bioelectron 2023; 235:115384. [PMID: 37244092 DOI: 10.1016/j.bios.2023.115384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
In the past few years, point-of-care testing (POCT) technology has crossed the boundaries of laboratory determination and entered the stage of practical applications. Herein, the latest advances and principal issues in the design and fabrication of paper-based bipolar electrode electrochemiluminescence (BPE-ECL) sensors, which are widely used in the POCT field, are highlighted. After introducing the attractive physical and chemical properties of cellulose paper, various approaches aimed at enhancing the functions of the paper, and their underlying principles are described. The materials typically employed for fabricating paper-based BPE are also discussed in detail. Subsequently, the universal method of enhancing BPE-ECL signal and improving detection accuracy is put forward, and the ECL detector widely used is introduced. Furthermore, the application of paper-based BPE-ECL sensors in biomedical, food, environmental and other fields are displayed. Finally, future opportunities and the remaining challenges are analyzed. It is expected that more design concepts and working principles for paper-based BPE-ECL sensors will be developed in the near future, paving the way for the development and application of paper-based BPE-ECL sensors in the POCT field and providing certain guarantee for the development of human health.
Collapse
Affiliation(s)
- Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Suyue Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Luqing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
2
|
Liang Y, Lai W, Su Y, Zhang C. A novel cloth-based multiway closed bipolar electrochemiluminescence biosensor for accurate detection of uric acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Chi S, Yang S, Sun Y, Pang Z, Sun X, Fan L, Wang F, Liu X, Wei M, Yang J, Yang N, Yang L. Synthesis and Improved Photoluminescent Properties and Stability of Bromine‐Rich CsPbBr
3
Nanocrystals Via using CTAB as Additive. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shaohua Chi
- Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| | - Shuo Yang
- College of Science Changchun University Changchun 130022 P. R. China
| | - Yansen Sun
- Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| | - Zhenyu Pang
- Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| | - Xiaoxu Sun
- Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| | - Lin Fan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| | - Fengyou Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| | - Xiaoyan Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| | - Maobin Wei
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| | - Nannan Yang
- College of Mechanical Engineering Jilin Engineering Normal University Changchun 130052 P. R. China
| | - Lili Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 P. R. China
| |
Collapse
|
4
|
Shared-cathode closed bipolar electrochemiluminescence cloth-based chip for multiplex detection. Anal Chim Acta 2022; 1206:339446. [PMID: 35473861 DOI: 10.1016/j.aca.2022.339446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022]
Abstract
Electrochemiluminescence (ECL) chips have been widely used in the field of medical diagnosis. However, most of these chips currently in use are costly and require high amounts of sample. In this work, we present, for the first time, a shared-cathode closed bipolar electrochemiluminescence (SC-CBP-ECL) cloth-based chip, which can be used for multiplex detection. The SC-CBP-ECL chips ($0.03-0.05 for each chip) are manufactured using carbon ink- and wax-based screen-printing techniques, without the need for expensive and complex fabrication equipment. Under optimised conditions, the SC-CBP-ECL chips were successfully used for coinstantaneous detection of glucose in double ECL systems (i.e., Ru(bpy)32+ and luminol), with corresponding linear ranges of 0.05-1 mM and 0.05-10 mM, and detection limits of 0.0382 mM and 0.0422 mM. To our knowledge, this is the first report on the application of fibre material-based closed bipolar electrodes (C-BPE) combined with double ECL systems. Furthermore, the SC-CBP-ECL chips exhibit an acceptable specificity and good reproducibility and stability and can be used for glucose detection in human serum samples with a good agreement compared with the clinical method. Finally, the SC-CBP-ECL chips could be successfully used for simultaneous detection of seven glucose samples and also show potential for simultaneous detection of three different targets (hydrogen peroxide [H2O2], glucose, and uric acid [UA]). Therefore, we believe that the chip described in this study has broad potential application in the field of cost-effective multiplex detection.
Collapse
|
5
|
Che ZY, Wang XY, Ma X, Ding SN. Bipolar electrochemiluminescence sensors: From signal amplification strategies to sensing formats. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Recent progress on the modifications of ultra-small perovskite nanomaterials for sensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Hao N, Qiu Y, Lu J, Han X, Li Y, Qian J, Wang K. Flexibly regulated electrochemiluminescence of all-inorganic perovskite CsPbBr3 quantum dots through electron bridge to across interfaces between polar and non-polar solvents. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:65-86. [PMID: 33940930 DOI: 10.1146/annurev-anchem-090820-093307] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this "wireless" electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
Collapse
Affiliation(s)
- Laurent Bouffier
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Dodzi Zigah
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Alexander Kuhn
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| |
Collapse
|
9
|
Cao Y, Zhu JJ. Recent Progress in Electrochemiluminescence of Halide Perovskites. Front Chem 2021; 9:629830. [PMID: 33816436 PMCID: PMC8017205 DOI: 10.3389/fchem.2021.629830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/09/2021] [Indexed: 11/23/2022] Open
Abstract
Halide perovskites are a rapidly developing class of solution-processable semiconductors which, to date, have a huge impact across several scientific communities. The remarkable photophysical attributes of halide perovskites illustrate their considerable potential in the electrochemiluminescence (ECL) realm. Over the past 4 years, great progress has been achieved in using halide perovskites as ECL emitters. In this mini-review, the basic characteristics, synthetic approaches, and ECL mechanisms for halide perovskite emitters are first introduced. To the best of our knowledge, most of the reported ECL-active halide perovskites and their disclosed unique features are detailly summarized. Stabilization and interface manipulation strategies for desirable ECL performance are further highlighted. The preliminary halide perovskites-related ECL applications are finally discussed, and prospects are also anticipated.
Collapse
Affiliation(s)
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Huang Y, Feng Y, Li F, Lin F, Wang Y, Chen X, Xie R. Sensing studies and applications based on metal halide perovskite materials: Current advances and future perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116127] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Lu L, Yuan W, Xiong Q, Wang M, Liu Y, Cao M, Xiong X. One-step grain pretreatment for ochratoxin A detection based on bipolar electrode-electrochemiluminescence biosensor. Anal Chim Acta 2021; 1141:83-90. [DOI: 10.1016/j.aca.2020.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
|
12
|
Affiliation(s)
- Kira L. Rahn
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
13
|
Electrochemical luminescence sensor based on CDs@HKUST-1 composite for detection of catechol. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Li J, Jiang D, Shan X, Wang W, Chen Z. An “off-on” electrochemiluminescence aptasensor for microcystin-LR assay based on the resonance energy transfer from PTCA/NH2-MIL-125(Ti) to gold nanoparticles. Mikrochim Acta 2020; 187:474. [DOI: 10.1007/s00604-020-04453-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/12/2020] [Indexed: 01/25/2023]
|
15
|
Wang Y, Chen T, Huang C, Wang Y, Wu J, Sun B. Electrochemically switchable electrochemiluminescent sensor constructed based on inorganic perovskite quantum dots synthesized with microwave irradiation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Cao Y, Zhu W, Li L, Zhang Z, Chen Z, Lin Y, Zhu JJ. Size-selected and surface-passivated CsPbBr 3 perovskite nanocrystals for self-enhanced electrochemiluminescence in aqueous media. NANOSCALE 2020; 12:7321-7329. [PMID: 32202287 DOI: 10.1039/d0nr00179a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, CsPbBr3 perovskite nanocrystals (NCs) synthesized via a ligand-assisted reprecipitation method (LCPB) were discovered to emit self-enhanced electrochemiluminescence (ECL) with the surface oleylamine as both a coreactant and a stabilizer. Solvent regulation and tri-n-octylphosphine post-treatment were manipulated for size-selected and surface-passivated LCPBs, which showed remarkable aqueous ECL performance with respect to efficiency and stability. Furthermore, thanks to the self-enhancement mode with a shorter charge transfer pathway and less energy loss, the ECL efficiency obtained for these as-synthesized LCPBs in aqueous solution without any additional coreactant was up to 57.08% using the Ru(bpy)32+-tripropylamine system as the standard. As a proof-of-concept, the products were successfully employed for the bioanalyses of hydrogen peroxide, ascorbic acid, and cancer cells based on inhibition, coreaction, and impedance detection principles, respectively. More importantly, the basic properties of LCPBs in aqueous media including surface chemistry, charge transfer process, and ECL mechanism were studied systematically. Such efforts are aimed at perfecting the fundamental research of all-inorganic perovskite NCs and opening an avenue for the design of highly crystalline and luminescent perovskites as advanced ECL emitters for applications in the ECL domain.
Collapse
Affiliation(s)
- Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Cathodic electrochemiluminescence performance of all-inorganic perovskite CsPbBr3 nanocrystals in an aqueous medium. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|