1
|
Kostelec M, Gatalo M, Hodnik N. Fundamental and Practical Aspects of Break-In/Conditioning of Proton Exchange Membrane Fuel Cells. CHEM REC 2024; 24:e202400114. [PMID: 39380349 DOI: 10.1002/tcr.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Indexed: 10/10/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs) have proven to be a promising power source for various applications ranging from portable devices to automotive and stationary power systems. The production of PEMFC involves numerous stages in the value chain, with each stage presenting unique challenges and opportunities to improve the overall performance and durability of the PEMFC stack. These include steps such as manufacturing the key components such as the platinum-based catalyst, processing these components into the membrane electrode assemblies (MEAs), and stacking the MEAs to ultimately produce a PEMFC stack. However, it is also known that the break-in or conditioning phase of the stack plays a crucial role in the final performance as well as durability. It involves several key phenomena such as hydration of the membrane, swelling of the ionomer, redistribution of the catalyst and the creation of suitable electrochemical interfaces - establishment of the triple phase boundary. These improve the proton conductivity, the mass transport of reactants and products, the catalytic activity of the electrode and thus the overall efficiency of the FC. The cruciality of break-in is demonstrated by the improvement in performance, which can even be over 50 % compared to the initial state. The state-of-the-art approach for the break-in of MEAs involves an electrochemical protocol, such as voltage cycling, using a PEMFC testing station. This method is time-consuming, equipment-intensive, and costly. Therefore, new, elegant, and cost-effective solutions are needed. Nevertheless, the primary aim is to achieve maximum/optimal performance so that it is fully operational and ready for the market. It is therefore essential to better understand and deconvolute these complex mechanisms taking place during break-in/conditioning. Strategies include controlled humidity and temperature cycling, novel electrode materials and other advanced break-in methods such as air braking, vacuum activation or steaming. In addition, it is critical to address the challenges associated with standardisation and quantification of protocols to enable interlaboratory comparisons to further advance the field.
Collapse
Affiliation(s)
- Mitja Kostelec
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- ReCatalyst d.o.o., Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001, Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| |
Collapse
|
2
|
Ma J, Ma H, Lin J, Zhang Y, Xiao L, Zhuang L, Xu P, Chen L. Hydrophobic modification enhances the microstructure stability of the catalyst layer in alkaline polymer electrolyte fuel cells. RSC Adv 2024; 14:26738-26746. [PMID: 39183997 PMCID: PMC11342164 DOI: 10.1039/d4ra04019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024] Open
Abstract
Alkaline polymer electrolyte fuel cells (APEFCs) have achieved notable advancements in peak power density, yet their durability during long-term operation remains a significant challenge. It has been recognized that increasing the hydrophobicity of the catalyst layer can effectively alleviate the performance degradation. However, a microscopic view of how hydrophobicity contributes to the stability of the catalyst layer microstructure is not clear. Here, we construct a membrane electrode assembly (MEA) with enhanced structural stability and durability by incorporating polytetrafluoroethylene (PTFE) particles into the catalyst layer. MEAs modified by this approach exhibit stabilized voltage platforms in current step tests and reduced hysteresis in current-voltage polarization curves during operation, indicating the critical role of PTFE in the removal of the excess water within the catalyst layer. Fuel cells with PTFE modification show more than 45% increase in electrochemical durability. By characterizing with field-emission scanning electron microscopy (FE-SEM) the surface and the internal microstructures of MEAs after durability tests, we find that the catalyst layers modified by PTFE experience much less reduction in porosity and less agglomeration of the solid components. These findings elucidate the microscopic mechanisms by which hydrophobicity promotes a more stable catalyst layer structure, thereby enhancing the durability of APEFCs. This research advances our understanding of hydrophobicity's impact on catalyst layer stability and offers a practical method to enhance the durability of APEFCs.
Collapse
Affiliation(s)
- Jun Ma
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Global Institute of Future Technology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Hualong Ma
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Global Institute of Future Technology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jiayi Lin
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Global Institute of Future Technology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yixiao Zhang
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Global Institute of Future Technology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Li Xiao
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- Sauvage Center for Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Lin Zhuang
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| | - Pengtao Xu
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Global Institute of Future Technology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), Global Institute of Future Technology, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
3
|
Cheng X, Zhou J, Luo L, Shen S, Zhang J. Boosting Bulk Oxygen Transport with Accessible Electrode Nanostructure in Low Pt Loading PEMFCs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308563. [PMID: 38342709 DOI: 10.1002/smll.202308563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/01/2024] [Indexed: 02/13/2024]
Abstract
Despite the high potential for reducing carbon emissions and contributing to the future of energy utilization, polymer electrolyte membrane fuel cells (PEMFCs) face challenges such as high costs and sluggish oxygen transport in cathode catalyst layers (CCLs). In this study, the impact of pore size distribution on bulk oxygen transport behavior is explored by introducing nano calcium carbonate of varying particle sizes for pore-forming. Physicochemical characterizations for are employed to examine the electrode structure, while in situ electrochemical measurements are used to scrutinize bulk oxygen transport resistance, effective oxygen diffusivity (D O 2 eff $D_{{{\mathrm{O}}}_2}^{{\mathrm{eff}}}$ ) and fuel cell performance. Additionally, the CCLs are constructed with aid of Lattice Boltzmann method (LBM) simulations andD O 2 eff $D_{{{\mathrm{O}}}_2}^{{\mathrm{eff}}}$ for CCLs with different pore size distribution are calculated. The findings reveal thatD O 2 eff $D_{{{\mathrm{O}}}_2}^{{\mathrm{eff}}}$ initially increases and then decreases as the most probable pore size increases. A "sphere-pipe" model is proposed to describe practical bulk oxygen transport in CCLs, highlighting the significant role of not only the pore size of secondary pores but also the number of primary pores in bulk oxygen transport.
Collapse
Affiliation(s)
- Xiaojing Cheng
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinghao Zhou
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuxuan Luo
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Favero S, Stephens IEL, Titirci MM. Anion Exchange Ionomers: Design Considerations and Recent Advances - An Electrochemical Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308238. [PMID: 37891006 DOI: 10.1002/adma.202308238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Alkaline-based electrochemical devices, such as anion exchange membrane (AEM) fuel cells and electrolyzers, are receiving increasing attention. However, while the catalysts and membrane are methodically studied, the ionomer is largely overlooked. In fact, most of the studies in alkaline electrolytes are conducted using the commercial proton exchange ionomer Nafion. The ionomer provides ionic conductivity; it is also essential for gas transport and water management, as well as for controlling the mechanical stability and the morphology of the catalyst layer. Moreover, the ionomer has distinct requirements that differ from those of anion-exchange membranes, such as a high gas permeability, and that depend on the specific electrode, such as water management. As a result, it is necessary to tailor the ionomer structure to the specific application in isolation and as part of the catalyst layer. In this review, an overview of the current state of the art for anion exchange ionomers is provided, summarizing their specific requirements and limitations in the context of AEM electrolyzers and fuel cells.
Collapse
Affiliation(s)
- Silvia Favero
- Department of Chemical Engineering, Imperial College London, England, SW7 2BU, UK
| | - Ifan E L Stephens
- Department of Materials, Imperial College London, England, SW7 2BU, UK
| | | |
Collapse
|
5
|
Lee CY, Shieh JS, Chen J, Wang XW, Liu CK, Wei CH. The Application of a Self-Made Integrated Three-in-One Microsensor and Commercially Available Wind Speed Sensor to the Cold Air Pipe of the Heating, Ventilation, and Air Conditioning in a Factory for Real-Time Wireless Measurement. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094471. [PMID: 37177677 PMCID: PMC10181556 DOI: 10.3390/s23094471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
In this study, the integrated three-in-one (temperature, humidity, and wind speed) microsensor was made through the technology of the Micro-electro-mechanical Systems (MEMS) to measure three important physical quantities of the internal environment of the cold air pipe of the Heating, Ventilation and Air Conditioning (HVAC) in the factory, plan the installation positions of the integrated three-in-one microsensor and commercially available wind speed sensor required by the internal environment of the cold air pipe, and conduct the actual 310-h long term test and comparison. In the experiment, it was also observed that the self-made micro wind speed sensor had higher stability compared to the commercially available wind speed sensor (FS7.0.1L.195). The self-made micro wind speed sensor has a variation range of ±200 mm/s, while the commercially available wind speed sensor a variation range of ±1000 mm/s. The commercially available wind speed sensor (FS7.0.1L.195) can only measure the wind speed; however, the self-made integrated three-in-one microsensor can conduct real-time measurements of temperature and humidity according to the environment at that time, and use different calibration curves to know the wind speed. As a result, it is more accurate and less costly than commercially available wind speed sensors. The material cost of self-made integrated three-in-one microsensor includes chemicals, equipment usage fees, and wires. In the future, factories may install a large number of self-made integrated three-in-one microsensors in place of commercially available wind speed sensors. Through real-time wireless measurements, the self-made integrated three-in-one microsensors can achieve the control optimization of the HVAC cold air pipe's internal environment to improve the quality of manufactured materials.
Collapse
Affiliation(s)
- Chi-Yuan Lee
- Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Jiann-Shing Shieh
- Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Jerry Chen
- Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Xin-Wen Wang
- Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chen-Kai Liu
- Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Chia-Hsin Wei
- Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 32003, Taiwan
| |
Collapse
|
6
|
Lee CY, Chen CH, Chen SY, Hsieh HT. High-Pressure-Resistant Flexible Seven-in-One Microsensor Embedded in High-Pressure Proton Exchange Membrane Water Electrolyzer for Real-Time Microscopic Measurement. MEMBRANES 2022; 12:919. [PMID: 36295677 PMCID: PMC9612035 DOI: 10.3390/membranes12100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The high-pressure proton exchange membrane water electrolyzer (PEMWE) used for hydrogen production requires a high-operating voltage, which easily accelerates the decomposition of hydrogen molecules, resulting in the aging or failure of the high-pressure PEMWE. As the high-pressure PEMWE ages internally, uneven flow distribution can lead to large temperature differences, reduced current density, flow plate corrosion, and carbon paper cracking. In this study, a new type of micro hydrogen sensor is developed with integrated flexible seven-in-one (voltage; current; temperature; humidity; flow; pressure; and hydrogen) microsensors.
Collapse
Affiliation(s)
- Chi-Yuan Lee
- Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 32003, Taiwan
| | | | - Shan-Yu Chen
- Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Hsiao-Te Hsieh
- Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 32003, Taiwan
| |
Collapse
|
7
|
Bellomo N, Michel M, Pistillo BR, White RJ, Barborini E, Lenoble D. Chemical Vapor Deposition for Advanced Polymer Electrolyte Fuel Cell Membranes. ChemElectroChem 2022. [DOI: 10.1002/celc.202101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicolas Bellomo
- Materials Research and Technology Department Luxembourg Institute of Science and Technology L-4422 Belvaux Luxembourg
- University of Luxembourg 2 Avenue de l'Université Esch-sur-Alzette L-4365 Luxembourg
| | - Marc Michel
- Materials Research and Technology Department Luxembourg Institute of Science and Technology L-4422 Belvaux Luxembourg
| | - Bianca Rita Pistillo
- Materials Research and Technology Department Luxembourg Institute of Science and Technology L-4422 Belvaux Luxembourg
| | - Robin J. White
- Materials Research and Technology Department Luxembourg Institute of Science and Technology L-4422 Belvaux Luxembourg
| | - Emanuele Barborini
- Materials Research and Technology Department Luxembourg Institute of Science and Technology L-4422 Belvaux Luxembourg
| | - Damien Lenoble
- Materials Research and Technology Department Luxembourg Institute of Science and Technology L-4422 Belvaux Luxembourg
| |
Collapse
|
8
|
Liang X, Ge X, He Y, Xu M, Shehzad MA, Sheng F, Bance‐Soualhi R, Zhang J, Yu W, Ge Z, Wei C, Song W, Peng J, Varcoe JR, Wu L, Xu T. 3D-Zipped Interface: In Situ Covalent-Locking for High Performance of Anion Exchange Membrane Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102637. [PMID: 34636177 PMCID: PMC8596103 DOI: 10.1002/advs.202102637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Polymer electrolyte membrane fuel cells can generate high power using a potentially green fuel (H2 ) and zero emissions of greenhouse gas (CO2 ). However, significant mass transport resistances in the interface region of the membrane electrode assemblies (MEAs), between the membrane and the catalyst layers remains a barrier to achieving MEAs with high power densities and long-term stabilities. Here, a 3D-interfacial zipping concept is presented to overcome this challenge. Vinylbenzyl-terminated bi-cationic quaternary-ammonium-based polyelectrolyte is employed as both the anionomer in the anion-exchange membrane (AEM) and catalyst layers. A quaternary-ammonium-containing covalently locked interface is formed by thermally induced inter-crosslinking of the terminal vinyl groups. Ex situ evaluation of interfacial bonding strength and in situ durability tests demonstrate that this 3D-zipped interface strategy prevents interfacial delamination without any sacrifice of fuel cell performance. A H2 /O2 AEMFC test demonstration shows promisingly high power densities (1.5 W cm-2 at 70 °C with 100% RH and 0.2 MPa backpressure gas feeds), which can retain performances for at least 120 h at a usefully high current density of 0.6 A cm-2 .
Collapse
Affiliation(s)
- Xian Liang
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
- School of Chemistry and Material EngineeringHuainan Normal UniversityHuainanAnhui232001P. R. China
| | - Xiaolin Ge
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Yubin He
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Mai Xu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
- School of Chemistry and Material EngineeringHuainan Normal UniversityHuainanAnhui232001P. R. China
| | - Muhammad A. Shehzad
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Fangmeng Sheng
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | | | - Jianjun Zhang
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Weisheng Yu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Zijuan Ge
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Chengpeng Wei
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Wanjie Song
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Jinlan Peng
- The Center for Micro‐ and Nanoscale Research and FabricationUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - John R. Varcoe
- Department of ChemistryUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Liang Wu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter ChemistryCollaborative Innovation Center of Chemistry for Energy MaterialsDepartment of Applied ChemistrySchool of Chemistry and Materials ScienceUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026P. R. China
| |
Collapse
|
9
|
López-Fernández E, Sacedón CG, Gil-Rostra J, Yubero F, González-Elipe AR, de Lucas-Consuegra A. Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules 2021; 26:6326. [PMID: 34770735 PMCID: PMC8587517 DOI: 10.3390/molecules26216326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Water electrolysis to obtain hydrogen in combination with intermittent renewable energy resources is an emerging sustainable alternative to fossil fuels. Among the available electrolyzer technologies, anion exchange membrane water electrolysis (AEMWE) has been paid much attention because of its advantageous behavior compared to other more traditional approaches such as solid oxide electrolyzer cells, and alkaline or proton exchange membrane water electrolyzers. Recently, very promising results have been obtained in the AEMWE technology. This review paper is focused on recent advances in membrane electrode assembly components, paying particular attention to the preparation methods for catalyst coated on gas diffusion layers, which has not been previously reported in the literature for this type of electrolyzers. The most successful methodologies utilized for the preparation of catalysts, including co-precipitation, electrodeposition, sol-gel, hydrothermal, chemical vapor deposition, atomic layer deposition, ion beam sputtering, and magnetron sputtering deposition techniques, have been detailed. Besides a description of these procedures, in this review, we also present a critical appraisal of the efficiency of the water electrolysis carried out with cells fitted with electrodes prepared with these procedures. Based on this analysis, a critical comparison of cell performance is carried out, and future prospects and expected developments of the AEMWE are discussed.
Collapse
Affiliation(s)
- Ester López-Fernández
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-University Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain; (J.G.-R.); (F.Y.); (A.R.G.-E.)
- Department of Chemical Engineering, School of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 12, E-13071 Ciudad Real, Spain;
| | - Celia Gómez Sacedón
- Department of Chemical Engineering, School of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 12, E-13071 Ciudad Real, Spain;
| | - Jorge Gil-Rostra
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-University Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain; (J.G.-R.); (F.Y.); (A.R.G.-E.)
| | - Francisco Yubero
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-University Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain; (J.G.-R.); (F.Y.); (A.R.G.-E.)
| | - Agustín R. González-Elipe
- Laboratory of Nanotechnology on Surfaces and Plasma, Institute of Materials Science of Seville (CSIC-University Sevilla), Av. Américo Vespucio 49, E-41092 Sevilla, Spain; (J.G.-R.); (F.Y.); (A.R.G.-E.)
| | - Antonio de Lucas-Consuegra
- Department of Chemical Engineering, School of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 12, E-13071 Ciudad Real, Spain;
| |
Collapse
|
10
|
Zhang J, Zhu W, Huang T, Zheng C, Pei Y, Shen G, Nie Z, Xiao D, Yin Y, Guiver MD. Recent Insights on Catalyst Layers for Anion Exchange Membrane Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100284. [PMID: 34032021 PMCID: PMC8336519 DOI: 10.1002/advs.202100284] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/03/2021] [Indexed: 05/29/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs) performance have significantly improved in the last decade (>1 W cm-2 ), and is now comparable with that of proton exchange membrane fuel cells (PEMFCs). At high current densities, issues in the catalyst layer (CL, composed of catalyst and ionomer), like oxygen transfer, water balance, and microstructural evolution, play important roles in the performance. In addition, CLs for AEMFCs have different requirements than for PEMFCs, such as chemical/physical stability, reaction mechanism, and mass transfer, because of different conductive media and pH environment. The anion exchange ionomer (AEI), which is the soluble or dispersed analogue of the anion exchange membrane (AEM), is required for hydroxide transport in the CL and is normally handled separately with the electrocatalyst during the electrode fabrication process. The importance of the AEI-catalyst interface in maximizing the utilization of electrocatalyst and fuel/oxygen transfer process must be carefully investigated. This review briefly covers new concepts in the complex AEMFC catalyst layer, before a detailed discussion on advances in CLs based on the design of AEIs and electrocatalysts. The importance of the structure-function relationship is highlighted with the aim of directing the further development of CLs for high-performance AEMFC.
Collapse
Affiliation(s)
- Junfeng Zhang
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| | - Weikang Zhu
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| | - Tong Huang
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| | - Chenyang Zheng
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| | - Yabiao Pei
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| | - Guoqiang Shen
- Institute of Science and TechnologyChina Three Gorges CorporationBeijing100038P. R. China
| | - Zixi Nie
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| | - Di Xiao
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| | - Yan Yin
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| | - Michael D. Guiver
- State Key Laboratory of EnginesSchool of Mechanical EngineeringTianjin UniversityTianjin300072P. R. China
| |
Collapse
|
11
|
Designing the next generation of proton-exchange membrane fuel cells. Nature 2021; 595:361-369. [PMID: 34262215 DOI: 10.1038/s41586-021-03482-7] [Citation(s) in RCA: 318] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
With the rapid growth and development of proton-exchange membrane fuel cell (PEMFC) technology, there has been increasing demand for clean and sustainable global energy applications. Of the many device-level and infrastructure challenges that need to be overcome before wide commercialization can be realized, one of the most critical ones is increasing the PEMFC power density, and ambitious goals have been proposed globally. For example, the short- and long-term power density goals of Japan's New Energy and Industrial Technology Development Organization are 6 kilowatts per litre by 2030 and 9 kilowatts per litre by 2040, respectively. To this end, here we propose technical development directions for next-generation high-power-density PEMFCs. We present the latest ideas for improvements in the membrane electrode assembly and its components with regard to water and thermal management and materials. These concepts are expected to be implemented in next-generation PEMFCs to achieve high power density.
Collapse
|