1
|
Suprun EV, Khmeleva SA, Duskaev IF, Ptitsyn KG, Kurbatov LK, Shershov VE, Kuznetsova VE, Lapa SA, Chudinov AV, Radko SP. Combining recombinase polymerase amplification with tyrosine modified 2'-deoxyuridine-5'-triphosphate for direct voltammetric detection of double-stranded DNA: Application to potato pathogen Dickeya solani. Talanta 2024; 273:125841. [PMID: 38460421 DOI: 10.1016/j.talanta.2024.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture. The optimized procedure of square wave voltammetry allowed to reliably detect the product generated by RPA at 80 % substitution of dTTP by dUTP-Y1 (dsDNA-Y1) in microliter sample volumes on the surface of disposable carbon screen printed electrodes at the potential of about 0.6 V. The calibration curve for the amplicon detection was linear in coordinates 'Ip, A vs. Log (c, M)' within the 0.05-1 μM concentration range. The limit of detection for dsDNA-Y1 was estimated as 8 nM. The sensitivity of the established electrochemical approach allowed to detect amplicons generated in a single standard 50 μL RPA reaction after their purification with silica-coated magnetic beads. The overall detectability of D. solani with the suggested combination of RPA and voltammetric registration of dsDNA-Y1 can be as low as a few copies of bacterial genome per standard reaction. In total, amplification, purification, and electrochemical detection take about 120-150 min. Considering the potential of direct electrochemical analysis for miniaturization, as well as compliance with low-cost and low-power requirements, the findings provide grounds for future development of microfluidic devices integrating isothermal amplification, amplicon purification and detection based on the tyrosine modified nucleotide for the purpose of 'on-site' detection of various pathogens.
Collapse
Affiliation(s)
- Elena V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow, 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia.
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Insaf F Duskaev
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow, 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Konstantin G Ptitsyn
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Leonid K Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| |
Collapse
|
2
|
Suprun EV, Khmeleva SA, Duskaev IF, Kurbatov LK, Kuznetsova VE, Shershov VE, Chudinov AV, Radko SP. Polymerase incorporation of 4-nitrophenyl modified 2'-deoxyuridine-5'-triphosphates into double-stranded DNA for direct electrochemical detection. J Pharm Biomed Anal 2024; 241:115977. [PMID: 38241909 DOI: 10.1016/j.jpba.2024.115977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Three novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.9 V (phosphate buffer, pH 7.4). The reduction peak currents of dUTP-N derivatives were found to increase with their molar concentrations. The dUTP-N3 with a double bond in the linker had the lowest reduction potential (about 100 mV less negative) among the derivatives studied. Further, dUTP-N nucleotides were tested as substrates in PCR and RPA to incorporate the electroactive labels into 90, 210, or 206 base pair long dsDNA amplicons. However, only a dUTP-N1 derivative with a shorter linker without the double bond demonstrated satisfactory compatibility with both PCR and RPA, though with a low reaction output of modified dsDNA amplicons (at 100% substitution of dTTP). The dsDNA amplicons produced by PCR with 85% substitution of dTTP by the dUTP-N1 in the reaction mixture were successfully detected by square wave voltammetry at micromolar concentrations at high square wave frequency.
Collapse
Affiliation(s)
- Elena V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia.
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Insaf F Duskaev
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Leonid K Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow 119991, Russia
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow 119991, Russia
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow 119991, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| |
Collapse
|
3
|
Suprun EV, Khmeleva SA, Bibik KV, Ptitsyn KG, Kurbatov LK, Radko SP. Polymerase incorporation of fluorescein or rhodamine modified 2'-deoxyuridine-5'-triphosphates into double-stranded DNA for direct electrochemical detection. J Pharm Biomed Anal 2023; 236:115737. [PMID: 37774487 DOI: 10.1016/j.jpba.2023.115737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The 2'-deoxyuridine-5'-triphosphates modified with fluorescein (dUTP-Fl) or rhodamine (dUTP-Rh) were tested as bearers of electroactive labels and as proper substrates for polymerases used in polymerase chain reaction (PCR) and isothermal recombinase polymerase amplification (RPA) with the aim of electrochemical detection of double-stranded DNA (dsDNA) amplification products. For this purpose, electrochemical behavior of free fluorescein and rhodamine as well as the modified nucleotides, dUTP-Fl and dUTP-Rh, was studied by cyclic (CV) and square wave (SWV) voltammetry on carbon screen printed electrodes. Both free fluorescein and dUTP-Fl underwent a two-step oxidation at the peak potentials (Ep) of 0.6-0.7 V and 0.8-0.9 V (phosphate buffer, pH 7.4). The reduction peaks of fluorescein and dUTP-Fl were registered between -0.9 V and -1 V, but they did not depend on concentration. The free rhodamine and dUTP-Rh have demonstrated the well-defined oxidation peaks at 0.8-0.9 V. In addition, the distinct reduction peaks at Ep between -0.8 V and -0.9 V were registered for both rhodamine and dUTP-Rh. The dUTP-Fl and dUTP-Rh were further tested as substrates to incorporate an electroactive label into 210 or 206 base pair long dsDNA amplicons generated either by PCR or RPA. Among two dUTP derivatives tested, dUTP-Fl revealed significantly better compatibility with PCR and RPA, producing the full-size amplicons at 50-90% substitution of dTTP in the reaction mixture. In the PCR, the best compromise between amplicon output and labeling was achieved at the dUTP-Fl : dTTP and dUTP-Rh : dTTP molar ratios of 70% : 30% and 20% : 80% in the PCR mixture, respectively, allowing the direct electrochemical detection of amplicons at micromolar concentrations. Alongside with fluorescence DNA assays, the fluorescein and rhodamine modified dUTP appear as promising electroactive labels to develop direct electrochemical DNA assays for detecting PCR and RPA products.
Collapse
Affiliation(s)
- Elena V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia.
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Konstantin V Bibik
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Konstantin G Ptitsyn
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Leonid K Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| |
Collapse
|
4
|
Warmt C, Broweleit LM, Fenzel CK, Henkel J. An experimental comparison between primer and nucleotide labelling to produce RPA-amplicons used for multiplex detection of antibiotic resistance genes. Sci Rep 2023; 13:15734. [PMID: 37735542 PMCID: PMC10514322 DOI: 10.1038/s41598-023-42830-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Direct labelling of amplification products using isothermal amplification is currently done most frequently by incorporating previously labelled primer. Although this method is well proven and widely used, it is not a universal solution due to some weaknesses. Alternatively, labelled nucleotides could be used, whose application and functionality have been already partially demonstrated. It remains to be determined how this method performs in comparison to traditional labelling, in particular combined with isothermal amplification methods. In this work, we show a detailed analysis of the labelling efficiency under different conditions and compare the results with the traditional primer-labelling method in the context of RPA amplification. Impressively, our results showed that using Cy5-labelled dUTPs can achieve much more efficient labelling for fragments above 200 bp, while using them for smaller fragments does not bring any relevant disadvantages, but also no major benefit. Furthermore, this work successfully demonstrate for the first time a quadruplex microarray for the detection of resistance genes using RPA and direct labelling with Cy5-dUTP as a potential application scenario. The sensitivities achieved here extend to SNP discovery for the detection of the proper blaKPC variant.
Collapse
Affiliation(s)
- Christian Warmt
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany.
| | - Lisa-Marie Broweleit
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Carolin Kornelia Fenzel
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Jörg Henkel
- Fraunhofer Institute for Cell Therapy and Immunology - Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| |
Collapse
|
5
|
Kodr D, Ortiz M, Sýkorová V, Yenice CP, Lesnikowski ZJ, O’Sullivan CK, Hocek M. Normalized Multipotential Redox Coding of DNA Bases for Determination of Total Nucleotide Composition. Anal Chem 2023; 95:12586-12589. [PMID: 37578459 PMCID: PMC10469368 DOI: 10.1021/acs.analchem.3c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
The previously reported approach of orthogonal multipotential redox coding of all four DNA bases allowed only analysis of the relative nucleotide composition of short DNA stretches. Here, we present two methods for normalization of the electrochemical readout to facilitate the determination of the total nucleotide composition. The first method is based on the presence or absence of an internal standard of 7-deaza-2'-deoxyguanosine in a DNA primer. The exact composition of the DNA was elucidated upon two parallel analyses and the subtraction of the electrochemical signal intensities. The second approach took advantage of a 5'-viologen modified primer, with this fifth orthogonal redox label acting as a reference for signal normalization, thus allowing accurate electrochemical sequence analysis in a single read. Both approaches were tested using various sequences, and the voltammetric signals obtained were normalized using either the internal standard or the reference label and demonstrated to be in perfect agreement with the actual nucleotide composition, highlighting the potential for targeted DNA sequence analysis.
Collapse
Affiliation(s)
- David Kodr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ-16000 Prague 6, Czech Republic
| | - Mayreli Ortiz
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Veronika Sýkorová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ-16000 Prague 6, Czech Republic
| | - Cansu Pinar Yenice
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
| | - Zbigniew J. Lesnikowski
- Laboratory
of Medicinal Chemistry, Institute of Medical
Biology PAS, Lodowa 106, 92-232 Łódź, Poland
| | - Ciara K. O’Sullivan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, 26 Països Catalans, 43007 Tarragona, Spain
- Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, CZ-16000 Prague 6, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 CZ-12843, Czech Republic
| |
Collapse
|
6
|
Solid-phase recombinase polymerase amplification using ferrocene-labelled dNTPs for electrochemical detection of single nucleotide polymorphisms. Biosens Bioelectron 2022; 198:113825. [PMID: 34838372 DOI: 10.1016/j.bios.2021.113825] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022]
Abstract
Hypertrophic cardiomyopathies (HCM) are the principal cause of sudden cardiac death in young athletes and it is estimated that 1 in 500 people have HCM. The aim of this work was to develop an electrochemical platform for the detection of HCM-associated SNP in the Myosin Heavy Chain 7 (MYH7) gene, in fingerprick blood samples. The platform exploits isothermal solid-phase primer elongation using recombinase polymerase amplification with either individual or a combination of four ferrocene-labelled nucleoside triphosphates. Four thiolated reverse primers containing a variable base at their 3' end were immobilised on individual gold electrodes of an array. Following hybridisation with target DNA, solid phase recombinase polymerase amplification was carried out and primer elongation incorporating the ferrocene labelled oligonucleotides was only detected at one of the electrodes, thus facilitating identification of the SNP under interrogation. The assay was applied to the direct detection of the SNP in fingerprick blood samples from eight different individuals, with the results obtained corroborating with next generation sequencing. The ability to be able to robustly identify the SNP using a 10 μL fingerprick sample, demonstrates that SNP discrimination is achieved using low femtomolar (ca. 8 × 105 copies DNA) levels of DNA.
Collapse
|