1
|
Radtke V, Priester D, Heering A, Müller C, Koslowski T, Leito I, Krossing I. The Unified Redox Scale for All Solvents: Consistency and Gibbs Transfer Energies of Electrolytes from their Constituent Single Ions. Chemistry 2023; 29:e202300609. [PMID: 37191477 DOI: 10.1002/chem.202300609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
We have devised the unified redox scale Eabs H2O , which is valid for all solvents. The necessary single ion Gibbs transfer energy between two different solvents, which only can be determined with extra-thermodynamic assumptions so far, must clearly satisfy two essential conditions: First, the sum of the independent cation and anion values must give the Gibbs transfer energy of the salt they form. The latter is an observable and measurable without extra-thermodynamic assumptions. Second, the values must be consistent for different solvent combinations. With this work, potentiometric measurements on silver ions and on chloride ions show that both conditions are fulfilled using a salt bridge filled with the ionic liquid [N2225 ][NTf2 ]: if compared to the values resulting from known pKL values, the silver and chloride single ion magnitudes combine within a uncertainty of 1.5 kJ mol-1 to the directly measurable transfer magnitudes of the salt AgCl from water to the solvents acetonitrile, propylene carbonate, dimethylformamide, ethanol, and methanol. The resulting values are used to further develop the consistent unified redox potential scale Eabs H2O that now allows to assess and compare redox potentials in and over six different solvents. We elaborate on its implications.
Collapse
Affiliation(s)
- Valentin Radtke
- Institut für Anorganische und, Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Denis Priester
- Institut für Anorganische und, Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Agnes Heering
- Institute of Chemistry, University of Tartu, Ravila 14a Str, 50411, Tartu, Estonia
| | - Carina Müller
- Institut für Anorganische und, Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Thorsten Koslowski
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a Str, 50411, Tartu, Estonia
| | - Ingo Krossing
- Institut für Anorganische und, Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| |
Collapse
|
2
|
Radtke V, Gebel N, Priester D, Ermantraut A, Bäuerle M, Himmel D, Stroh R, Koslowski T, Leito I, Krossing I. Measurements and Utilization of Consistent Gibbs Energies of Transfer of Single Ions: Towards a Unified Redox Potential Scale for All Solvents. Chemistry 2022; 28:e202200509. [PMID: 35446995 PMCID: PMC9401597 DOI: 10.1002/chem.202200509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/08/2022]
Abstract
Utilizing the "ideal" ionic liquid salt bridge to measure Gibbs energies of transfer of silver ions between the solvents water, acetonitrile, propylene carbonate and dimethylformamide results in a consistent data set with a precision of 0.6 kJ mol-1 over 87 measurements in 10 half-cells. This forms the basis for a coherent experimental thermodynamic framework of ion solvation chemistry. In addition, we define the solvent independent pe abs H 2 O - and the E abs H 2 O values that account for the electronating potential of any redox system similar to the pH abs H 2 O value of a medium that accounts for its protonating potential. This E abs H 2 O scale is thermodynamically well-defined enabling a straightforward comparison of the redox potentials (reducities) of all media with respect to the aqueous redox potential scale, hence unifying all conventional solvents' redox potential scales. Thus, using the Gibbs energy of transfer of the silver ion published herein, one can convert and unify all hitherto published redox potentials measured, for example, against ferrocene, to the E abs H 2 O scale.
Collapse
Affiliation(s)
- Valentin Radtke
- Institut für Anorganische und Analytische ChemieFreiburger Materialforschungszentrum (FMF) andFreiburg Center for Interactive Materials and Bioinspired Technologies (FIT)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Niklas Gebel
- Institut für Anorganische und Analytische ChemieFreiburger Materialforschungszentrum (FMF) andFreiburg Center for Interactive Materials and Bioinspired Technologies (FIT)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Denis Priester
- Institut für Anorganische und Analytische ChemieFreiburger Materialforschungszentrum (FMF) andFreiburg Center for Interactive Materials and Bioinspired Technologies (FIT)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Andreas Ermantraut
- Institut für Anorganische und Analytische ChemieFreiburger Materialforschungszentrum (FMF) andFreiburg Center for Interactive Materials and Bioinspired Technologies (FIT)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Monika Bäuerle
- Institut für Anorganische und Analytische ChemieFreiburger Materialforschungszentrum (FMF) andFreiburg Center for Interactive Materials and Bioinspired Technologies (FIT)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Daniel Himmel
- Institut für Anorganische und Analytische ChemieFreiburger Materialforschungszentrum (FMF) andFreiburg Center for Interactive Materials and Bioinspired Technologies (FIT)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Regina Stroh
- Institut für Anorganische und Analytische ChemieFreiburger Materialforschungszentrum (FMF) andFreiburg Center for Interactive Materials and Bioinspired Technologies (FIT)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Thorsten Koslowski
- Institut für Physikalische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 23a79104FreiburgGermany
| | - Ivo Leito
- Institute of ChemistryUniversity of TartuRavila 14a Str50411TartuEstonia
| | - Ingo Krossing
- Institut für Anorganische und Analytische ChemieFreiburger Materialforschungszentrum (FMF) andFreiburg Center for Interactive Materials and Bioinspired Technologies (FIT)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| |
Collapse
|
3
|
Himmel D, Radtke V, Butschke B, Krossing I. Grundlegende Bemerkungen zur Azidität. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel Himmel
- Institut für Anorganische und Analytische Chemie, und Freiburger Materialforschungszentrum (FMF); Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Valentin Radtke
- Institut für Anorganische und Analytische Chemie, und Freiburger Materialforschungszentrum (FMF); Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Burkhard Butschke
- Institut für Anorganische und Analytische Chemie, und Freiburger Materialforschungszentrum (FMF); Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie, und Freiburger Materialforschungszentrum (FMF); Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| |
Collapse
|
4
|
Himmel D, Radtke V, Butschke B, Krossing I. Basic Remarks on Acidity. Angew Chem Int Ed Engl 2018; 57:4386-4411. [PMID: 29171707 DOI: 10.1002/anie.201709057] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/16/2017] [Indexed: 12/21/2022]
Abstract
This Review provides a unified view on Brønsted acidity. For this purpose, a brief overview of the concepts acidity, acid strengths, and pH value is given, including problems, proposed solutions, and the use of the pHabs /pHabsH2O scale as a unifying concept. Thereafter, some examples of the accessibility and application of unified pHabs values are given. The Review is rounded off with the analogy of acid-base chemistry to redox chemistry with the introduction of the unified redox scale peabs . The combination of pHabs and peabs values in the protoelectric potential map (PPM), as elaborated in ongoing studies on the thermochemistry of single ions, provides a means to classify and to compare all possible acid-base/redox reactions in a medium-independent and, thus, unified fashion.
Collapse
Affiliation(s)
- Daniel Himmel
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Valentin Radtke
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Burkhard Butschke
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| |
Collapse
|
5
|
|
6
|
Electrostatics of the photosynthetic bacterial reaction center. Protonation of Glu L 212 and Asp L 213 — A new method of calculation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015. [DOI: 10.1016/j.bbabio.2015.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys Chem Chem Phys 2014; 16:15068-106. [PMID: 24958074 DOI: 10.1039/c4cp01572j] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article reviews recent developments and applications in the area of computational electrochemistry. Our focus is on predicting the reduction potentials of electron transfer and other electrochemical reactions and half-reactions in both aqueous and nonaqueous solutions. Topics covered include various computational protocols that combine quantum mechanical electronic structure methods (such as density functional theory) with implicit-solvent models, explicit-solvent protocols that employ Monte Carlo or molecular dynamics simulations (for example, Car-Parrinello molecular dynamics using the grand canonical ensemble formalism), and the Marcus theory of electronic charge transfer. We also review computational approaches based on empirical relationships between molecular and electronic structure and electron transfer reactivity. The scope of the implicit-solvent protocols is emphasized, and the present status of the theory and future directions are outlined.
Collapse
Affiliation(s)
- Aleksandr V Marenich
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA.
| | | | | | | | | |
Collapse
|
8
|
Topolev VV, Krishtalik LI. Real energies of ferricinium cation transfer from water to organo-aqueous solvents. RUSS J ELECTROCHEM+ 2012. [DOI: 10.1134/s1023193512090133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kuznetsov AM, Zueva EM, Masliy AN, Krishtalik LI. Redox potential of the Rieske iron-sulfur protein quantum-chemical and electrostatic study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:347-59. [PMID: 20026009 DOI: 10.1016/j.bbabio.2009.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 12/04/2009] [Accepted: 12/08/2009] [Indexed: 11/15/2022]
Abstract
Quantum-chemical study of structures, energies, and effective partial charge distribution for several models of the Rieske protein redox center is performed in terms of the B3LYP density functional method in combination with the broken symmetry approach using three different atomic basis sets. The structure of the redox complex optimized in vacuum differs markedly from that inside the protein. This means that the protein matrix imposes some stress on the active site resulting in distortion of its structure. The redox potentials calculated for the real active site structure are in a substantially better agreement with the experiment than those calculated for the idealized structure. This shows an important role of the active site distortion in tuning its redox potential. The reference absolute electrode potential of the standard hydrogen electrode is used that accounts for the correction caused by the water surface potential. Electrostatic calculations are performed in the framework of the polarizable solute model. Two dielectric permittivities of the protein are employed: the optical permittivity for calculation of the intraprotein electric field, and the static permittivity for calculation of the dielectric response energy. Only this approach results in a reasonable agreement of the calculated and experimental redox potentials.
Collapse
Affiliation(s)
- Andrey M Kuznetsov
- Kazan State Technological University, ul. K. Marksa 68, 420015, Kazan, Russia.
| | | | | | | |
Collapse
|