1
|
Das A, Peu SD, Hossain MS, Akanda MAM, Salah MM, Akanda MMH, Rahman M, Das BK. Metal Oxide Nanosheet: Synthesis Approaches and Applications in Energy Storage Devices (Batteries, Fuel Cells, and Supercapacitors). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1066. [PMID: 36985960 PMCID: PMC10057665 DOI: 10.3390/nano13061066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the increasing energy requirement and consumption necessitates further improvement in energy storage technologies to obtain high cycling stability, power and energy density, and specific capacitance. Two-dimensional metal oxide nanosheets have gained much interest due to their attractive features, such as composition, tunable structure, and large surface area which make them potential materials for energy storage applications. This review focuses on the establishment of synthesis approaches of metal oxide nanosheets (MO nanosheets) and their advancements over time, as well as their applicability in several electrochemical energy storage systems, such as fuel cells, batteries, and supercapacitors. This review provides a comprehensive comparison of different synthesis approaches of MO nanosheets, as well their suitability in several energy storage applications. Among recent improvements in energy storage systems, micro-supercapacitors, and several hybrid storage systems are rapidly emerging. MO nanosheets can be employed as electrode and catalyst material to improve the performance parameters of energy storage devices. Finally, this review outlines and discusses the prospects, future challenges, and further direction for research and applications of metal oxide nanosheets.
Collapse
Affiliation(s)
- Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Sanowar Hossain
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Md Abdul Mannan Akanda
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Mostafa M. Salah
- Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt
| | | | - Mahbubur Rahman
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Barun K. Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| |
Collapse
|
2
|
Sugimoto W, Takimoto D. Platinum Group Metal-based Nanosheets: Synthesis and Application towards Electrochemical Energy Storage and Conversion. CHEM LETT 2021. [DOI: 10.1246/cl.210087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wataru Sugimoto
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Daisuke Takimoto
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
3
|
Sztaberek L, Mabey H, Beatrez W, Lore C, Santulli AC, Koenigsmann C. Sol-Gel Synthesis of Ruthenium Oxide Nanowires To Enhance Methanol Oxidation in Supported Platinum Nanoparticle Catalysts. ACS OMEGA 2019; 4:14226-14233. [PMID: 31508545 PMCID: PMC6733171 DOI: 10.1021/acsomega.9b01489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
A template-directed, sol-gel synthesis is utilized to produce crystalline RuO2 nanowires. Crystalline nanowires with a diameter of 128 ± 15 nm were synthesized after treating the nanowires at 600 °C in air. Analysis of these nanowires by X-ray powder diffraction revealed the major crystalline phase to be tetragonal RuO2 with a small quantity of metallic ruthenium present. Further analysis of the nanowire structures by high-resolution transmission electron microscopy reveals that they are polycrystalline and are composed of interconnected, highly crystalline, nanoparticles having an average size of ∼25 nm. Uniform 3 nm Pt nanoparticles were dispersed on the surface of RuO2 nanowires using an ambient, solution-based technique yielding a hybrid catalyst for methanol oxidation. Linear sweep voltammograms (LSVs) and chronoamperometry performed in the presence of methanol in an acidic electrolyte revealed a significant enhancement in the onset potential, mass activity, and long-term stability compared with analogous Pt nanoparticles supported on commercially available Vulcan XC-72R carbon nanoparticles. Formic acid oxidation LSVs and CO stripping voltammetry revealed that the RuO2-supported Pt nanoparticles exhibit significantly higher CO tolerance, which leads to higher catalytic stability over a period of several hours. X-ray photoelectron spectroscopy results suggest that crystalline RuO2 leads to less-significant oxidation of the Pt surface relative to more widely studied hydrous RuO2 supports, thereby increasing catalytic performance.
Collapse
Affiliation(s)
- Lukasz Sztaberek
- Department
of Chemistry, Fordham University, 441 East Fordham Road, Bronx, New York 10458, United States
- Department
of Environmental Control Technology, New
York City College of Technology, 300 Jay Street, Brooklyn, New York 11201, United
States
| | - Hannah Mabey
- Department
of Chemistry and Biochemistry, Manhattan
College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - William Beatrez
- Department
of Chemistry, Fordham University, 441 East Fordham Road, Bronx, New York 10458, United States
| | - Christopher Lore
- Department
of Chemistry and Biochemistry, Manhattan
College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Alexander C. Santulli
- Department
of Chemistry and Biochemistry, Manhattan
College, 4513 Manhattan College Parkway, Riverdale, New York 10471, United States
| | - Christopher Koenigsmann
- Department
of Chemistry, Fordham University, 441 East Fordham Road, Bronx, New York 10458, United States
| |
Collapse
|
4
|
Spatially resolved quantification of ruthenium oxide phase in a direct methanol fuel cell operated under normal and fuel starved conditions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
SUGIMOTO W. Conducting Nanosheets and Nanoparticles for Supercapacitors and Fuel Cell Electrocatalysts. ELECTROCHEMISTRY 2018. [DOI: 10.5796/electrochemistry.18-6-e2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Wataru SUGIMOTO
- Faculty of Textile Science and Technology, Shinshu University
- Center for Energy and Environmental Science, Shinshu University
| |
Collapse
|
6
|
Nutariya J, Kuroiwa E, Takimoto D, Shen Z, Mochizuki D, Sugimoto W. Model electrode study of Ru@Pt core-shell nanosheet catalysts: Pure two-dimensional growth via surface limited redox replacement. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Olu PY, Ohnishi T, Mochizuki D, Sugimoto W. Uncovering the real active sites of ruthenium oxide for the carbon monoxide electro-oxidation reaction on platinum: The catalyst acts as a co-catalyst. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Pt-Ru-NiTiO3 Nanoparticles Dispersed on Vulcan as High Performance Electrocatalysts for the Methanol Oxidation Reaction (MOR). Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-017-0450-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Takimoto D, Fukuda K, Miyasaka S, Ishida T, Ayato Y, Mochizuki D, Shimizu W, Sugimoto W. Synthesis and Oxygen Electrocatalysis of Iridium Oxide Nanosheets. Electrocatalysis (N Y) 2016. [DOI: 10.1007/s12678-016-0348-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Kakati N, Maiti J, Lee SH, Jee SH, Viswanathan B, Yoon YS. Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt-Ru? Chem Rev 2015; 114:12397-429. [PMID: 25537109 DOI: 10.1021/cr400389f] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nitul Kakati
- Department of Chemical Engineering, Gachon University , 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Li CZ, Wang ZB, Liu J, Liu CT, Gu DM, Han JC. The effect of hydrothermal treatment time and level of carbon coating on the performance of PtRu/C catalysts in a direct methanol fuel cell. RSC Adv 2014. [DOI: 10.1039/c4ra10161h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The existence of carbon nanolayer on the surface of the PtRu/C catalyst from glucosein situcarbonization inhibits the migration and coalescence of PtRu metal nanoparticles on the support.
Collapse
Affiliation(s)
- Cun-Zhi Li
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin, 150001 China
- School of Science
- Harbin Institute of Technology
| | - Zhen-Bo Wang
- School of Chemical Engineering and Technology
- Harbin Institute of Technology
- Harbin, 150001 China
- School of Materials Science and Engineering
- Harbin Institute of Technology
| | - Jing Liu
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080, China
| | - Chun-Tao Liu
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080, China
| | - Da-Ming Gu
- School of Science
- Harbin Institute of Technology
- Harbin, 150001 China
| | - Jie-Cai Han
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin, 150001 China
| |
Collapse
|
12
|
Takimoto D, Chauvin C, Sugimoto W. Improving oxygen reduction reaction activity and durability of 1.5nm Pt by addition of ruthenium oxide nanosheets. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Improved methanol oxidation on a PtRu–RuO2/C composite catalyst with close contact. REACTION KINETICS MECHANISMS AND CATALYSIS 2012. [DOI: 10.1007/s11144-012-0532-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Lee YW, Ko AR, Kim DY, Han SB, Park KW. Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells. RSC Adv 2012. [DOI: 10.1039/c1ra00308a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
SAIDA T, TAKASU Y, SUGIMOTO W. Methanol Adsorption and Oxidation Behavior of Various Nanostructured Ruthenium-Oxides in Acidic Electrolyte. ELECTROCHEMISTRY 2011. [DOI: 10.5796/electrochemistry.79.371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Sato J, Kato H, Kimura M, Fukuda K, Sugimoto W. Conductivity of ruthenate nanosheets prepared via electrostatic self-assembly: characterization of isolated single nanosheet crystallite to mono- and multilayer electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18049-18054. [PMID: 21069961 DOI: 10.1021/la103848f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ultrathin films composed of ruthenate nanosheets (RuO(2)ns) were fabricated via electrostatic self-assembly of unilamellar RuO(2)ns crystallites derived by total exfoliation of an ion-exchangeable layered ruthenate. Ultrathin films with submonolayer to monolayer RuO(2)ns coverage and multilayered RuO(2)ns thin films were prepared by controlled electrostatic self-assembly and layer-by-layer deposition using a cationic copolymer as the counterion. Electrical properties of a single RuO(2)ns crystallite were successfully measured by means of scanning probe microscopy. The sheet resistance of an isolated single RuO(2)ns crystallite was 12 kΩ sq(-1). Self-assembled submonolayer films behaved as a continuous conducting film for coverage above 70%, which was discussed based on a two-dimensional percolation model. Low sheet resistance was attained for multilayered films with values less than 1 kΩ sq(-1). Interestingly, the grain boundary resistance between nanosheets seems to contribute only slightly to the sheet resistance of self-assembled films.
Collapse
Affiliation(s)
- Jun Sato
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | | | | | | | | |
Collapse
|
17
|
The problem of Ru dissolution from Pt–Ru catalysts during fuel cell operation: analysis and solutions. J Solid State Electrochem 2010. [DOI: 10.1007/s10008-010-1124-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|