1
|
Bang G, Jin S, Kim H, Kim KM, Lee CH. Mg-incorporated sorbent for efficient removal of trace CO from H 2 gas. Nat Commun 2023; 14:7045. [PMID: 37923791 PMCID: PMC10624860 DOI: 10.1038/s41467-023-42871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Removal of trace CO impurities is an essential step in the utilization of Hydrogen as a clean energy source. While various solutions are currently employed to address this challenge, there is an urgent need to improve their efficiency. Here, we show that a bead-structured Mg, Cu, and Ce-based sorbent, Mg13CuCeOx, demonstrates superior removal capacity of trace CO from H2 with high stability. The incorporation of Mg boosts sorption performance by enhancing the porous structure and Cu+ surface area. Remarkably, compared to existing pelletized sorbents, Mg13CuCeOx exhibits 15.5 to 50 times greater equilibrium capacity under pressures below 10 Pa CO and 31 times longer breakthrough time in removing 50 ppm CO in H2. Energy-efficient oxidative regeneration using air at 120 °C allows its stable sorption performance over 20 cycles. Through in-situ DRIFTS analysis, we elucidate the reaction mechanism that Mg augments the surface OH groups, promoting the formation of bicarbonate and formate species. This study highlights the potential of MgCuCeOx sorbents in advancing the hydrogen economy by effectively removing trace CO from H2.
Collapse
Affiliation(s)
- Gina Bang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Seongmin Jin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hyokyung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Min Kim
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, Republic of Korea.
| | - Chang-Ha Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhu S, Deng W, Su Y. Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Wang G, Luo J, Qiao Y, Zhang D, Liu Y, Zhang W, Liu X, Jiang X. AMPK/mTOR Pathway Is Involved in Autophagy Induced by Magnesium-Incorporated TiO 2 Surface to Promote BMSC Osteogenic Differentiation. J Funct Biomater 2022; 13:jfb13040221. [PMID: 36412862 PMCID: PMC9680369 DOI: 10.3390/jfb13040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Magnesium has been extensively utilized to modify titanium implant surfaces based on its important function in promoting osteogenic differentiation. Autophagy has been proven to play a vital role in bone metabolism. Whether there is an association between autophagy and magnesium in promoting osteogenic differentiation remains unclear. In the present study, we focused on investigating the role of magnesium ions in early osteogenic activity and the underlying mechanism related to autophagy. Different concentrations of magnesium were embedded in micro-structured titanium surface layers using the micro-arc oxidation (MAO) technique. The incorporation of magnesium benefited cell adhesion, spreading, and viability; attenuated intracellular ATP concentrations and p-mTOR levels; and upregulated p-AMPK levels. This indicates the vital role of the ATP-related AMPK/mTOR signaling pathway in the autophagy process associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) induced by magnesium modification on titanium surfaces. The enhanced osteogenic differentiation and improved cellular autophagy activity of BMSCs in their extraction medium further confirmed the function of magnesium ions. The results of the present study advance our understanding of the mechanism by which magnesium regulates BMSC osteogenic differentiation through autophagy regulation. Moreover, endowing implants with the ability to activate autophagy may be a promising strategy for enhancing osseointegration in the translational medicine field in the future.
Collapse
Affiliation(s)
- Guifang Wang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jiaxin Luo
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
- Correspondence: (Y.Q.); (X.J.)
| | - Dongdong Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
| | - Yulan Liu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
- Correspondence: (Y.Q.); (X.J.)
| |
Collapse
|
4
|
Recent Progresses of Superhydrophobic Coatings in Different Application Fields: An Overview. COATINGS 2021. [DOI: 10.3390/coatings11020116] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
With the development of material engineering and coating industries, superhydrophobic coatings with exceptional water repellence have increasingly come into researchers’ horizons. The superhydrophobic coatings with corrosion resistance, self-cleaning, anti-fogging, drag-reduction, anti-icing properties, etc., meet the featured requirements from different application fields. In addition, endowing superhydrophobic coatings with essential performance conformities, such as transparency, UV resistance, anti-reflection, water-penetration resistance, thermal insulation, flame retardancy, etc. plays a remarkable role in broadening their application scope. Various superhydrophobic coatings were fabricated by diverse technologies resulting from the fundamental demands of different fields. Most past reviews, however, provided only limited information, and lacked detailed classification and presentation on the application of superhydrophobic coatings in different sectors. In the current review, we will highlight the recent progresses on superhydrophobic coatings in automobile, marine, aircraft, solar energy and architecture-buildings fields, and discuss the requirement of prominent functionalities and performance conformities in these vital fields. Poor durability of superhydrophobic coating remains a practical challenge that needs to be addressed through real-world application. This review serves as a good reference source and provides insight into the design and optimization of superhydrophobic coatings for different applications.
Collapse
|
5
|
Wang L, Luo Q, Zhang X, Qiu J, Qian S, Liu X. Co-implantation of magnesium and zinc ions into titanium regulates the behaviors of human gingival fibroblasts. Bioact Mater 2021; 6:64-74. [PMID: 32817914 PMCID: PMC7419333 DOI: 10.1016/j.bioactmat.2020.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Soft tissue sealing around implants acts as a barrier between the alveolar bone and oral environment, protecting implants from the invasion of bacteria or external stimuli. In this work, magnesium (Mg) and zinc (Zn) are introduced into titanium by plasma immersed ion implantation technology, and their effects on the behaviors of human gingival fibroblasts (HGFs) as well as the underlying mechanisms are investigated. Surface characterization confirms Mg and Zn exist on the surface in metallic and oxidized states. Contact angle test suggests that surface wettability of titanium changes after ion implantation and thus influences protein adsorption of surfaces. In vitro studies disclose that HGFs on Mg ion-implanted samples exhibit better adhesion and migration while cells on Zn ion-implanted samples have higher proliferation rate and amounts. The results of immunofluorescence staining and real-time reverse-transcriptase polymerase chain reaction (RT-PCR) suggest that Mg mainly regulates the motility and adhesion of HGFs through activating the MAPK signal pathway whereas Zn influences HGFs proliferation by triggering the TGF-β signal pathway. The synergistic effect of Mg and Zn ions ensure that HGFs cultured on co-implanted samples possessed both high proliferation rate and motility, which are critical to soft tissue sealing of implants.
Collapse
Key Words
- BSA, bovine serum albumin
- CLSM, confocal laser-scanning microscope
- DAPI, 4′, 6-diamidino-2-phenylindole
- ECM, extracellular matrix
- FM, fibroblasts medium
- HGFs, human gingival fibroblasts
- Human gingival fibroblasts
- Magnesium
- PBS, phosphate buffer saline
- PFA, para-formaldehyde
- PIII, plasma immersion ion implantation
- Plasma immersion ion implantation
- RT-PCR, reverse-transcriptase polymerase chain reaction
- SEM, scanning electron microscope
- Soft tissue sealing
- XPS, X-ray photoelectron spectroscopy
- Zinc
Collapse
Affiliation(s)
- Lanyu Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiming Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianming Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
6
|
Yuan G, Liu Y, Ngo CV, Guo C. Rapid fabrication of anti-corrosion and self-healing superhydrophobic aluminum surfaces through environmentally friendly femtosecond laser processing. OPTICS EXPRESS 2020; 28:35636-35650. [PMID: 33379675 PMCID: PMC7771893 DOI: 10.1364/oe.400804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The development of superhydrophobic metals has found many applications such as self-cleaning, anti-corrosion, anti-icing, and water transportation. Recently, femtosecond laser has been used to create nano/microstructures and wetting property changes. However, for some of the most common metals, such as aluminum, a relatively long aging process is required to obtain stable hydrophobicity. In this work, we introduce a combination of femtosecond laser ablation and heat treatment post-process, without using any harsh chemicals. We turn aluminum superhydrophobic within 30 minutes of heat treatment following femtosecond laser processing, and this is significantly shorter compared to conventional aging process of laser-ablated aluminum. The superhydrophobic surfaces maintain high contact angles greater than 160° and low sliding angles smaller than 5° over two months after the heat treatment. Moreover, the samples exhibit strong superhydrophobicity for various types of liquids (milk, coffee, CuPc, R6G, HCl, NaOH and CuCl2). The samples also show excellent self-healing and anti-corrosion properties. The mechanism for fast wettability conversion time is discussed. Our technique is a rapid process, reproducible, feasible for large-area fabrication, and environment-friendly.
Collapse
Affiliation(s)
- Gan Yuan
- The Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yu Liu
- The Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Chi-Vinh Ngo
- The Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
| | - Chunlei Guo
- The Institute of Optics, University of Rochester, Rochester, New York 14637, USA
| |
Collapse
|
7
|
He QQ, Zhou MJ, Hu JM. Electrodeposited Zn-Al layered double hydroxide films for corrosion protection of aluminum alloys. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136796] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Hu C, Xie X, Zheng H, Qing Y, Ren K. Facile fabrication of superhydrophobic zinc coatings with corrosion resistance via an electrodeposition process. NEW J CHEM 2020. [DOI: 10.1039/d0nj00561d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this investigation, we demonstrated a controlled electrodeposition method by varying the current density to generate hierarchical structures of zinc (Zn) on a carbon steel surface, which serves as a hydrophobic and anticorrosion coating when further modified by stearic acid to form a covalently bonded layer that offers low surface energy.
Collapse
Affiliation(s)
- Chuanbo Hu
- Department of Chemistry
- Hong Kong Baptist University
- China
- School of Environmental and Chemical Engineering
- Chongqing Three Gorges University
| | - Xinying Xie
- Department of Chemistry
- Hong Kong Baptist University
- China
| | - Hui Zheng
- Department of Chemistry
- Hong Kong Baptist University
- China
- Department of Chemistry
- Georgia State University
| | - Yongquan Qing
- School of Materials Science and Engineering
- Northeastern University
- Shenyang 110819
- China
| | - Kangning Ren
- Department of Chemistry
- Hong Kong Baptist University
- China
- State Key Laboratory of Environmental and Biological Analysis
- Hong Kong Baptist University
| |
Collapse
|
9
|
Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.01.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Kang MH, Lee H, Jang TS, Seong YJ, Kim HE, Koh YH, Song J, Jung HD. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Biomater 2019; 84:453-467. [PMID: 30500444 DOI: 10.1016/j.actbio.2018.11.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022]
Abstract
The medical applications of porous Mg scaffolds are limited owing to its rapid corrosion, which dramatically decreases the mechanical strength of the scaffold. Mimicking the bone structure and composition can improve the mechanical and biological properties of porous Mg scaffolds. The Mg structure can also be coated with HA by an aqueous precipitation coating method to enhance both the corrosion resistance and the biocompatibility. However, due to the brittleness of HA coating layer, cracks tend to form in the HA coating layer, which may influence the corrosion and biological functionality of the scaffold. Consequently, in this study, hybrid poly(ether imide) (PEI)-SiO2 layers were applied to the HA-coated biomimetic porous Mg to impart the structure with the high corrosion resistance associated with PEI and excellent bioactivity with SiO2. The porosity of the Mg was controlled by adjusting the concentration of the sodium chloride (NaCl) particles used in the fabrication via the space-holder method. The mechanical measurements showed that the compressive strength and stiffness of the biomimetic porous Mg increased as the portion of the dense region increased. In addition, following results show that HA/(PEI-SiO2) hybrid-coated biomimetic Mg is a promising biodegradable scaffold for orthopedic applications. In-vitro testing revealed that the proposed hybrid coating reduced the degradation rate and facilitated osteoblast spreading compared to HA- and HA/PEI-coating scaffolds. Moreover, in-vivo testing with a rabbit femoropatellar groove model showed improved tissue formation, reduced corrosion and degradation, and improved bone formation on the scaffold. STATEMENT OF SIGNIFICANCE: Porous Mg is a promising biodegradable scaffold for orthopedic applications. However, there are limitations in applying porous Mg for an orthopedic biomaterial due to its poor mechanical properties and susceptibility to rapid corrosion. Here, we strategically designed the structure and coating layer of porous Mg to overcome these limitations. First, porous Mg was fabricated by mimicking the bone structure which has a combined structure of dense and porous regions, thus resulting in an enhancement of mechanical properties. Furthermore, the biomimetic porous Mg was coated with HA/(PEI-SiO2) hybrid layer to improve both corrosion resistance and biocompatibility. As the final outcome, with tunable mechanical and biodegradable properties, HA/(PEI-SiO2)-coated biomimetic porous Mg could be a promising candidate material for load-bearing orthopedic applications.
Collapse
Affiliation(s)
- Min-Ho Kang
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea; Center of Nanoparticle Research, Institute for Basic Science (IBS), Republic of Korea
| | - Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Sik Jang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore; Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Yun-Jeong Seong
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hag Koh
- School of Biomedical Engineering, Korea University, Seoul 136-703, Republic of Korea
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore
| | - Hyun-Do Jung
- Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea.
| |
Collapse
|
11
|
Shulha TN, Serdechnova M, Lamaka SV, Wieland DCF, Lapko KN, Zheludkevich ML. Chelating agent-assisted in situ LDH growth on the surface of magnesium alloy. Sci Rep 2018; 8:16409. [PMID: 30401953 PMCID: PMC6219525 DOI: 10.1038/s41598-018-34751-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/22/2018] [Indexed: 11/09/2022] Open
Abstract
In situ formation of layered double hydroxides (LDH) on metallic surfaces has recently been considered a promising approach for protective conversion surface treatments for Al and Mg alloys. In the case of Mg-based substrates, the formation of LDH on the metal surface is normally performed in autoclave at high temperature (between 130 and 170 °C) and elevated pressure conditions. This hampers the industrial application of MgAl LDH to magnesium substrates. In this paper, the growth of MgAl LDH conversion coating directly on magnesium alloy AZ91 at ambient conditions (25 °C) or elevated temperatures is reported in carbonate free electrolyte for the first time. The direct LDH synthesis on Mg alloys is enabled by the presence of organic chelating agents (NTA and EDTA), which control the amount of free and/or hydroxyl bound Mg2+ and Al3+ in the solution. The application of the chelating agents help overcoming the typical technological limitations of direct LDH synthesis on Mg alloys. The selection of chelators and the optimization of the LDH treatment process are supported by the analysis of the thermodynamic chemical equilibria.
Collapse
Affiliation(s)
- T N Shulha
- MagIC-Magnesium Innovation Center, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straβe 1, 21502, Geesthacht, Germany
- Faculty of Chemistry, Belarusian State University, Nezavisimosti Avenue 4, 220030, Minsk, Belarus
| | - M Serdechnova
- MagIC-Magnesium Innovation Center, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straβe 1, 21502, Geesthacht, Germany.
| | - S V Lamaka
- MagIC-Magnesium Innovation Center, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straβe 1, 21502, Geesthacht, Germany
| | - D C F Wieland
- MagIC-Magnesium Innovation Center, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straβe 1, 21502, Geesthacht, Germany
| | - K N Lapko
- Faculty of Chemistry, Belarusian State University, Nezavisimosti Avenue 4, 220030, Minsk, Belarus
| | - M L Zheludkevich
- MagIC-Magnesium Innovation Center, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straβe 1, 21502, Geesthacht, Germany
- Faculty of Engineering, University of Kiel, Kaiserstrasse 2, 24143, Kiel, Germany
| |
Collapse
|
12
|
Yu T, Lu S, Xu W, He G. Fabrication of bismuth superhydrophobic surface on zinc substrate. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.060] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Hydrothermal treatment and butylphosphonic acid derived self-assembled monolayers for improving the surface chemistry and corrosion resistance of AZ61 magnesium alloy. Sci Rep 2017; 7:16910. [PMID: 29203906 PMCID: PMC5715064 DOI: 10.1038/s41598-017-17199-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022] Open
Abstract
The hydrothermal treatment followed by a self-assembled monolayer (SAM) of 1-butylphosphonic acid through the tethering by aggregation and growth (T-BAG) method was employed to produce protective surface coatings on the Mg-6Al-1Zn alloy (AZ61) for reducing the degradation rate in physiological environments. Potentiodynamic polarization measurements revealed that the organic self-assembled monolayer and Mg(OH)2 coating can further enhance the surface chemical stability and corrosion resistance of Mg alloys. SAM-treated Mg(OH)2 coatings can be served as a more passive surface layer as a result of their much higher charge transfer resistance and the presence of Warburg impedance in electrochemical impedance spectroscopy measurement.
Collapse
|
15
|
Cui S, Lu S, Xu W, Wu B. Fabrication of superhydrophobic Pt 3 Fe/Fe surface for its application. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Li L, He J, Lei J, Liu L, Zhang X, Huang T, Li N, Pan F. Anticorrosive superhydrophobic AZ61 Mg surface with peony-like microstructures. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Zhang Y, Feyerabend F, Tang S, Hu J, Lu X, Blawert C, Lin T. A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:405-412. [PMID: 28576002 DOI: 10.1016/j.msec.2017.04.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications.
Collapse
Affiliation(s)
- Yufen Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Frank Feyerabend
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Max-Plank-Str. 1, 21502 Geesthacht, Germany
| | - Shawei Tang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jin Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| | - Xiaopeng Lu
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Max-Plank-Str. 1, 21502 Geesthacht, Germany
| | - Carsten Blawert
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Max-Plank-Str. 1, 21502 Geesthacht, Germany
| | - Tiegui Lin
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
18
|
Corrosion Resistance of the Superhydrophobic Mg(OH)2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys. METALS 2016. [DOI: 10.3390/met6040085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Wan B, Ou J, Lv D, Xue M, Wang F, Wu H. Superhydrophobic ceria on aluminum and its corrosion resistance. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.5940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Beibei Wan
- School of Material Science and Engineering; Nanchang Hangkong University; Nanchang 330063 China
- Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province; Nanchang Hangkong University; Nanchang 330063 China
| | - Junfei Ou
- School of Material Science and Engineering; Nanchang Hangkong University; Nanchang 330063 China
- Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province; Nanchang Hangkong University; Nanchang 330063 China
| | - Damei Lv
- School of Material Science and Engineering; Nanchang Hangkong University; Nanchang 330063 China
- Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province; Nanchang Hangkong University; Nanchang 330063 China
| | - Mingshan Xue
- School of Material Science and Engineering; Nanchang Hangkong University; Nanchang 330063 China
- Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province; Nanchang Hangkong University; Nanchang 330063 China
| | - Fajun Wang
- School of Material Science and Engineering; Nanchang Hangkong University; Nanchang 330063 China
- Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province; Nanchang Hangkong University; Nanchang 330063 China
| | - Huiming Wu
- College of Chemistry and Chemical Engineering; Hubei University; Wuhan 430062 China
| |
Collapse
|
20
|
Qing Y, Yang C, Sun Y, Zheng Y, Wang X, Shang Y, Wang L, Liu C. Facile fabrication of superhydrophobic surfaces with corrosion resistance by nanocomposite coating of TiO2 and polydimethylsiloxane. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Hydrophobic Mg–Al layered double hydroxide film on aluminum: Fabrication and microbiologically influenced corrosion resistance properties. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Liu Q, Chen D, Kang Z. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1859-67. [PMID: 25559356 DOI: 10.1021/am507586u] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.
Collapse
Affiliation(s)
- Qin Liu
- School of Mechanical and Automotive Engineering, South China University of Technology , Guangzhou 510640, China
| | | | | |
Collapse
|
23
|
Cheng Y, Lu S, Xu W, Wen H. Fabrication of Au–AlAu4–Al2O3 superhydrophobic surface and its corrosion resistance. RSC Adv 2015. [DOI: 10.1039/c4ra12909a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A stable superhydrophobic surface with excellent corrosion resistance has been fabricated via immersion and annealing without organic modification.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Chemistry
- Beijing Institute of Technology
- Beijing 100081
- P.R. China
| | - Shixiang Lu
- School of Chemistry
- Beijing Institute of Technology
- Beijing 100081
- P.R. China
| | - Wenguo Xu
- School of Chemistry
- Beijing Institute of Technology
- Beijing 100081
- P.R. China
| | - Huidong Wen
- Beijing Microelectronics Technology Institute
- Beijing 100076
- P.R. China
| |
Collapse
|
24
|
Sahoo BN, Kandasubramanian B. Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Adv 2014. [DOI: 10.1039/c4ra00506f] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
25
|
|
26
|
Cathodic etching for fabrication of super-hydrophobic aluminum coating with micro/nano-hierarchical structure. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2141-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
He Y, Jiang C, Yin H, Chen J, Yuan W. Superhydrophobic silicon surfaces with micro–nano hierarchical structures via deep reactive ion etching and galvanic etching. J Colloid Interface Sci 2011; 364:219-29. [DOI: 10.1016/j.jcis.2011.07.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/07/2011] [Accepted: 07/09/2011] [Indexed: 11/30/2022]
|
28
|
Xu W, Song J, Sun J, Lu Y, Yu Z. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS APPLIED MATERIALS & INTERFACES 2011; 3:4404-14. [PMID: 22008385 DOI: 10.1021/am2010527] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.
Collapse
Affiliation(s)
- Wenji Xu
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | | | | | | | | |
Collapse
|
29
|
Li Z, Yuan Y, Sun P, Jing X. Ceramic coatings of LA141 alloy formed by plasma electrolytic oxidation for corrosion protection. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3682-3690. [PMID: 21863847 DOI: 10.1021/am200863s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Superlight Mg-Li alloy is a promising structural materials in aerospace, automobile, and electronics because of its excellent properties such as low density, high ductility, superior strength-to-weight ratio, and good damping ability. The fabrication of compact plasma electrolytic oxidation coatings with excellent corrosion resistance is valuable for the widespread application of Mg-Li alloy. Here we present a ceramic coating on the surface of Mg-14Li-1Al (LA141) alloy for corrosion protection via plasma electrolytic oxidation (PEO) in an alkaline silicate electrolyte with tungstate as an additive. X-ray photoelectron spectroscopy and thin film-X-ray diffraction analysis of coatings show that the surface coating is mainly comprised of Mg(2)SiO(4), MgO and WO(3). Scanning electron microscopy observations have revealed that the dense and compact coating formed in the presence of tungstate has less structural imperfections in comparison to the control one fabricated without use of tungstate. The effect of oxidation time on the morphology and phase composition of coatings is also examined in detail.
Collapse
Affiliation(s)
- Zhijun Li
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| | | | | | | |
Collapse
|
30
|
Zhang C, Guo R, Yang Y, Wu Y, Liu L. Influence of the size of spraying powders on the microstructure and corrosion resistance of Fe-based amorphous coating. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.05.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Tedim J, Zheludkevich ML, Salak AN, Lisenkov A, Ferreira MGS. Nanostructured LDH-container layer with active protection functionality. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12463c] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|