1
|
Ramu P, Vimal SP, Suresh P, Sanmugam A, Saravanakumar U, Kumar RS, Almansour AI, Arumugam N, Vikraman D. Investigation of the one-step electrochemical deposition of graphene oxide-doped poly(3,4-ethylenedioxythiophene)-polyphenol oxidase as a dopamine sensor. RSC Adv 2022; 12:15575-15583. [PMID: 35685176 PMCID: PMC9125988 DOI: 10.1039/d2ra00791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
In this paper, we fabricated poly(3,4-ethylenedioxythiophene) (PEDOT)-graphene oxide-polyphenol oxidase (PEDOT-GO-PPO) as a dopamine sensor. The morphology of PEDOT-GO-PPO was observed using scanning electron microscopy. Cyclic voltammetry was conducted to study the oxidation-reduction characteristics of dopamine. To optimize the pH, potential and limit of detection of dopamine, the amperometric technique was employed. The found limit of detection was 8 × 10-9 M, and the linear range was from 5 × 10-8 to 8.5 × 10-5 M. The Michaelis-Menten constant (K m) was calculated to be 70.34 μM, and the activation energy of the prepared electrode was 32.75 kJ mol-1. The electrode shows no significant change in the interference study. The modified electrode retains up to 80% of its original activity after 2 months. In the future, the biosensor can be used for the quantification of dopamine in human urine samples. The present modified electrode constitutes a tool for the electrochemical analysis of dopamine.
Collapse
Affiliation(s)
- P Ramu
- Department of Electronics and Communication Engineering, Jaya Institute of Technology Tamilnadu India
| | - S P Vimal
- Department of Electronics and Communication Engineering, Jaya Institute of Technology Tamilnadu India
- Department of Electronics and Communication Engineering, Sri Ramakrishna Engineering College Coimbatore India
| | - P Suresh
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Chennai Tamilnadu 600062 India
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Vanketeswara College of Engineering Pennalur, Sriperambudur 602117 Chennai India
| | - U Saravanakumar
- Department of Electronics and Communication Engineering, Muthayammal Engineering College Rasipuram Tamilnadu India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul Seoul 04620 Korea
| |
Collapse
|
2
|
Verma S, Arya P, Singh A, Kaswan J, Shukla A, Kushwaha HR, Gupta S, Singh SP. ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum. Biosens Bioelectron 2020; 165:112347. [DOI: 10.1016/j.bios.2020.112347] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 11/28/2022]
|
3
|
Affiliation(s)
- Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi China
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| |
Collapse
|
4
|
Liu C, Zhao Y, Cai X, Xie Y, Wang T, Cheng D, Li L, Li R, Deng Y, Ding H, Lv G, Zhao G, Liu L, Zou G, Feng M, Sun Q, Yin L, Sheng X. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. MICROSYSTEMS & NANOENGINEERING 2020; 6:64. [PMID: 34567675 PMCID: PMC8433152 DOI: 10.1038/s41378-020-0176-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/20/2020] [Accepted: 04/12/2020] [Indexed: 05/30/2023]
Abstract
Physical and chemical technologies have been continuously progressing advances in neuroscience research. The development of research tools for closed-loop control and monitoring neural activities in behaving animals is highly desirable. In this paper, we introduce a wirelessly operated, miniaturized microprobe system for optical interrogation and neurochemical sensing in the deep brain. Via epitaxial liftoff and transfer printing, microscale light-emitting diodes (micro-LEDs) as light sources and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-coated diamond films as electrochemical sensors are vertically assembled to form implantable optoelectrochemical probes for real-time optogenetic stimulation and dopamine detection capabilities. A customized, lightweight circuit module is employed for untethered, remote signal control, and data acquisition. After the probe is injected into the ventral tegmental area (VTA) of freely behaving mice, in vivo experiments clearly demonstrate the utilities of the multifunctional optoelectrochemical microprobe system for optogenetic interference of place preferences and detection of dopamine release. The presented options for material and device integrations provide a practical route to simultaneous optical control and electrochemical sensing of complex nervous systems.
Collapse
Affiliation(s)
- Changbo Liu
- School of Materials Science and Engineering and Hangzhou Innovation Institute, Beihang University, Beijing, 100191 China
| | - Yu Zhao
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| | - Xue Cai
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| | - Taoyi Wang
- Department of Physics, Tsinghua University, Beijing, 100084 China
| | - Dali Cheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| | - Rongfeng Li
- Beijing Institute of Collaborative Innovation, Beijing, 100094 China
| | - Yuping Deng
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081 China
| | - Guoqing Lv
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081 China
| | - Guanlei Zhao
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
| | - Lei Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
| | - Guisheng Zou
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
| | - Meixin Feng
- Key Laboratory of Nano-devices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123 China
| | - Qian Sun
- Key Laboratory of Nano-devices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, 215123 China
| | - Lan Yin
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
5
|
Hashim HS, Fen YW, Sheh Omar NA, Abdullah J, Daniyal WMEMM, Saleviter S. Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. OPTICS EXPRESS 2020; 28:9738-9752. [PMID: 32225575 DOI: 10.1364/oe.387027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
In this study, the incorporation between gold modified-tyrosinase (Tyr) enzyme based graphene oxide (GO) thin film with surface plasmon resonance (SPR) technique has been developed for the detection of phenol. SPR signal for the thin film contacted with phenol solution was monitored using SPR technique. From the SPR curve, sensitivity, full width at half maximum (FWHM), detection accuracy (DA) and signal-to-noise ratio (SNR) have been analyzed. The sensor produces a linear response for phenol up to 100 µM with sensitivity of 0.00193° µM-1. Next, it can be observed that deionized water has the lowest FWHM, with a value of 1.87° and also the highest value of DA. Besides, the SNR of the SPR signal was proportional to the phenol concentrations. Furthermore, the surface morphology of the modified thin film after exposed with phenol solution observed using atomic force microscopy showed a lot of sharp peaks compared to the image before in contact with phenol proved the interaction between the thin film and phenol.
Collapse
|
6
|
Cancelliere R, Carbone K, Pagano M, Cacciotti I, Micheli L. Biochar from Brewers' Spent Grain: A Green and Low-Cost Smart Material to Modify Screen-Printed Electrodes. BIOSENSORS-BASEL 2019; 9:bios9040139. [PMID: 31816955 PMCID: PMC6956167 DOI: 10.3390/bios9040139] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 11/23/2022]
Abstract
In the present study, biochar from brewers’ spent grain was used, for the first time, to develop screen-printed electrodes. After having investigated the dispersion behaviour of biochar in different organic solvents, a biochar-based screen-printed electrode was prepared with the drop-casting technique. In order to understand the electrochemical potentiality and performances of the biochar/sensor tool, different electroactive species, i.e., ferricyanide, benzoquinone, epinephrine, ascorbic, and uric acids, were used. The results were compared with those of the same electrodes that were modified with commercial graphene, confirming that the proposed electrode showed improved electrochemical behaviour in terms of resolution, peak-to-peak separation, current intensity, and resistance to charge transfer. Furthermore, a tyrosinase biosensor was developed by direct immobilisation of this enzyme on the biochar/screen printed electrode, as an example of the potential of biochar for disposable biosensor development. The efficiently occurred immobilisation of the biochar on the screen printed electrode’s (SPE’s) surface was demonstrated by the observation of the working electrode with a scanning electron microscope. The detection was performed by measuring the current due to the reduction of the corresponding quinone at low potential, equal to −0.310 V for epinephrine. The experimental conditions for the tyrosinase immobilization and the analytical parameters, such as applied potential and pH of buffer, were studied and optimized. Under these conditions, the electrochemical biosensors were characterized. A linear working range of epinephrine was obtained from 0.05 up to 0.5 mM. The detection limit was 2 × 10−4 mM for the biosensor.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy;
| | - Katya Carbone
- CREA, Research Centre for Olive, Citrus and Tree Fruit, Via di Fioranello 52, 00134 Rome, Italy;
| | - Mauro Pagano
- CREA Research Centre for Engineering and Agro-Food Processing, Via Della Pascolare 16, Monterotondo, 00015 Rome, Italy;
| | - Ilaria Cacciotti
- Engineering Department, University of Rome “Niccolò Cusano”, Via Don Carlo Gnocchi 3, 00166 Rome, Italy;
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy;
- Correspondence:
| |
Collapse
|
7
|
Yang T, Ren X, Yang M, Li X, He K, Rao A, Wan Y, Yang H, Wang S, Luo Z. A highly sensitive label-free electrochemical immunosensor based on poly(indole-5-carboxylicacid) with ultra-high redox stability. Biosens Bioelectron 2019; 141:111406. [DOI: 10.1016/j.bios.2019.111406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
|
8
|
Jia H, Yang T, Xu Q, Xu J, Lu L, Yu Y, Li P. Facile construction of poly (indole‑5‑carboxylic acid) @ poly (3, 4‑ethylenedioxythiophene) label-free immunosensing platform for sensitive detection of prostate specific antigen. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Investigating the electrochemical behaviour and detection of uric acid on ITO electrodes modified with differently doped N-graphene films. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Moon JM, Thapliyal N, Hussain KK, Goyal RN, Shim YB. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens Bioelectron 2017; 102:540-552. [PMID: 29220802 DOI: 10.1016/j.bios.2017.11.069] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Neurotransmitters are important biochemical molecules that control behavioral and physiological functions in central and peripheral nervous system. Therefore, the analysis of neurotransmitters in biological samples has a great clinical and pharmaceutical importance. To date, various methods have been developed for their assay. Of the various methods, the electrochemical sensors demonstrated the potential of being robust, selective, sensitive, and real time measurements. Recently, conducting polymers (CPs) and their composites have been widely employed in the fabrication of various electrochemical sensors for the determination of neurotransmitters. Hence, this review presents a brief introduction to the electrochemical biosensors, with the detailed discussion on recent trends in the development and applications of electrochemical neurotransmitter sensors based on CPs and their composites. The review covers the sensing principle of prime neurotransmitters, including glutamate, aspartate, tyrosine, epinephrine, norepinephrine, dopamine, serotonin, histamine, choline, acetylcholine, nitrogen monoxide, and hydrogen sulfide. In addition, the combination with other analytical techniques was also highlighted. Detection challenges and future prospective of the neurotransmitter sensors were discussed for the development of biomedical and healthcare applications.
Collapse
Affiliation(s)
- Jong-Min Moon
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Neeta Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea
| | - Rajendra N Goyal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | - Yoon-Bo Shim
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
11
|
Tyrosinase-Based Biosensors for Selective Dopamine Detection. SENSORS 2017; 17:s17061314. [PMID: 28590453 PMCID: PMC5492229 DOI: 10.3390/s17061314] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022]
Abstract
A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA). For increased selectivity, gold electrodes were previously modified with cobalt (II)-porphyrin (CoP) film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr) was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA), with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%), and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.
Collapse
|
12
|
Palanisamy S, Thangavelu K, Chen SM, Gnanaprakasam P, Velusamy V, Liu XH. Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples. Carbohydr Polym 2016; 151:401-407. [DOI: 10.1016/j.carbpol.2016.05.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022]
|
13
|
Rahman SF, Min K, Park SH, Park JH, Yoo JC, Park DH. Highly sensitive and selective dopamine detection by an amperometric biosensor based on tyrosinase/MWNT/GCE. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0207-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Dincer C, Ktaich R, Laubender E, Hees JJ, Kieninger J, Nebel CE, Heinze J, Urban GA. Nanocrystalline boron-doped diamond nanoelectrode arrays for ultrasensitive dopamine detection. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Poly(indole-5-carboxylic acid)-functionalized ZnO nanocomposite for electrochemical DNA hybridization detection. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-3071-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Electrochemical immunoassay for the biomarker 8-hydroxy-2′-deoxyguanosine using a glassy carbon electrode modified with chitosan and poly(indole-5-carboxylic acid). Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1652-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Özel RE, Hayat A, Andreescu S. RECENT DEVELOPMENTS IN ELECTROCHEMICAL SENSORS FOR THE DETECTION OF NEUROTRANSMITTERS FOR APPLICATIONS IN BIOMEDICINE. ANAL LETT 2015; 48:1044-1069. [PMID: 26973348 PMCID: PMC4787221 DOI: 10.1080/00032719.2014.976867] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotransmitters are important biological molecules that are essential to many neurophysiological processes including memory, cognition, and behavioral states. The development of analytical methodologies to accurately detect neurotransmitters is of great importance in neurological and biological research. Specifically designed microelectrodes or microbiosensors have demonstrated potential for rapid, real-time measurements with high spatial resolution. Such devices can facilitate study of the role and mechanism of action of neurotransmitters and can find potential uses in biomedicine. This paper reviews the current status and recent advances in the development and application of electrochemical sensors for the detection of small-molecule neurotransmitters. Measurement challenges and opportunities of electroanalytical methods to advance study and understanding of neurotransmitters in various biological models and disease conditions are discussed.
Collapse
Affiliation(s)
- Rıfat Emrah Özel
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394
| | - Akhtar Hayat
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA. Fax: 3152686610; Tel: 3152682394
| |
Collapse
|
18
|
Zhang W. Electrochemically reduced graphene oxide supported poly(indole-5-carboxylic acid) nanocomposite for genosensing application. RSC Adv 2015. [DOI: 10.1039/c5ra21071b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An ultrasensitive DNA electrochemical biosensing interface was developed for rapid determination of BCR/ABL fusion gene by employing ERGNO supported PICA.
Collapse
Affiliation(s)
- Wei Zhang
- School of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- China
| |
Collapse
|
19
|
An electrochemical immunosensor for the tumor marker α-fetoprotein using a glassy carbon electrode modified with a poly(5-formylindole), single-wall carbon nanotubes, and coated with gold nanoparticles and antibody. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1313-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Suresh R, Giribabu K, Manigandan R, Stephen A, Narayanan V. Fabrication of Ni–Fe2O3 magnetic nanorods and application to the detection of uric acid. RSC Adv 2014. [DOI: 10.1039/c4ra00725e] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.04.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Nie G, Bai Z, Yu W, Chen J. Electrochemiluminescence biosensor based on conducting poly(5-formylindole) for sensitive detection of Ramos cells. Biomacromolecules 2013; 14:834-40. [PMID: 23373751 DOI: 10.1021/bm3018802] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A signal-on electrochemiluminescence (ECL) biosensor devoted to the detection of Ramos cells was fabricated based on a novel conducting polymer, poly(5-formylindole) (P5FIn), which was synthesized electrochemically by direct anodic oxidation of 5-formylindole (5FIn). This ECL platform was presented by covalently coupling the 18-mer amino-substituted oligonucleotide (ODN) probes with aldehyde groups that are strongly reactive toward a variety of nucleophiles on the surface of solid substrates. The specific identification and high-affinity between aptamers and target cells, gold nanoparticles (AuNPs) enhanced ECL nanoprobes, along with P5FIn induced ECL quenching contributed greatly to the sensitivity and selectivity. The ECL signals were logarithmically linear with the concentration of Ramos cells in a wide determination range from 500 to 1.0 × 10(5) cells mL(-1), and the corresponding detection limit was 300 cells mL(-1).
Collapse
Affiliation(s)
- Guangming Nie
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.
| | | | | | | |
Collapse
|
23
|
Pandey RK, Upadhyay C, Prakash R. Pressure dependent surface morphology and Raman studies of semicrystalline poly(indole-5-carboxylic acid) by the Langmuir–Blodgett technique. RSC Adv 2013. [DOI: 10.1039/c3ra41895b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
24
|
Jackowska K, Krysinski P. New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 2012; 405:3753-71. [PMID: 23241816 PMCID: PMC3608872 DOI: 10.1007/s00216-012-6578-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 12/11/2022]
Abstract
Since the early 70s electrochemistry has been used as a powerful analytical technique for monitoring electroactive species in living organisms. In particular, after extremely rapid evolution of new micro and nanotechnology it has been established as an invaluable technique ranging from experiments in vivo to measurement of exocytosis during communication between cells under in vitro conditions. This review highlights recent advances in the development of electrochemical sensors for selective sensing of one of the most important neurotransmitters--dopamine. Dopamine is an electroactive catecholamine neurotransmitter, abundant in the mammalian central nervous system, affecting both cognitive and behavioral functions of living organisms. We have not attempted to cover a large time-span nor to be comprehensive in presenting the vast literature devoted to electrochemical dopamine sensing. Instead, we have focused on the last five years, describing recent progress as well as showing some problems and directions for future development.
Collapse
|
25
|
|
26
|
He M, Zheng X. A highly sensitive and selective method for dopamine detection based on poly (folic acid) film modified electrode. J Mol Liq 2012. [DOI: 10.1016/j.molliq.2012.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
A novel and simple biosensor based on poly(indoleacetic acid) film and its application for simultaneous electrochemical determination of dopamine and epinephrine in the presence of ascorbic acid. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1646-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Jia D, Dai J, Yuan H, Lei L, Xiao D. Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode. Talanta 2011; 85:2344-51. [DOI: 10.1016/j.talanta.2011.07.067] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/17/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
29
|
Ekiz F, Oğuzkaya F, Akin M, Timur S, Tanyeli C, Toppare L. Synthesis and application of poly-SNS-anchored carboxylic acid: a novel functional matrix for biomolecule conjugation. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12048d] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|