1
|
Kumar G, Srivastava A, Kumar P, Srikrishna S, Singh VP. Fluorescent Turn-On Anthracene-Based Aluminum(III) Sensor for a Therapeutic Study in Alzheimer's Disease Model of Drosophila. ACS Chem Neurosci 2023; 14:2792-2801. [PMID: 37436111 DOI: 10.1021/acschemneuro.3c00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A new anthracene-based probe (E)-N'-(1-(anthracen-9-yl)ethylidene)-2-hydroxybenzohydrazide (AHB) has been efficiently synthesized and characterized by various spectroscopic methods. It exhibits extremely selective and sensitive fluorometric sensing of Al3+ ions with a large enhancement in the fluorescent intensity due to the restricted photoinduced electron transfer (PET) mechanism with a chelation-enhanced fluorescence (CHEF) effect. The AHB-Al3+ complex shows a remarkably low limit of detection at 0.498 nM. The binding mechanism has been proposed based on Job's plot, 1H NMR titration, Fourier transform infrared (FT-IR), high-resolution mass spectrometry (HRMS), and density functional theory (DFT) studies. The chemosensor is reusable and reversible in the presence of ctDNA. The practical usability of the fluorosensor has been established by a test strip kit. Further, the therapeutic potential of AHB against Al3+ ion-induced tau protein toxicity has been tested in the eye of Alzheimer's disease (AD) model of Drosophila via metal chelation therapy. AHB shows great therapeutic potential with 53.3% rescue in the eye phenotype. The in vivo interaction study of AHB with Al3+ in the gut tissue of Drosophila confirms its sensing efficiency in the biological environment. A detailed comparison table included evaluates the effectiveness of AHB.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabhat Kumar
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Srikrishna
- Department of Bio Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod P Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Mudi N, Shyamal M, Giri PK, Samanta SS, Ramirtz-Tagle R, Misra A. Anthracene scaffold as highly selective chemosensor for Al 3+ and its AIEE activity. Photochem Photobiol Sci 2023:10.1007/s43630-023-00392-7. [PMID: 36805447 DOI: 10.1007/s43630-023-00392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/05/2023] [Indexed: 02/21/2023]
Abstract
Fluorescent chemosensor, 3-(Anthracen-2-yliminomethyl)-benzene-1,2-diol (ANB) has been synthesized by one-step condensation of 2-aminoanthracene and 2,3-dihydroxybenzaldehyde and characterized using 1H-NMR, FT-IR and Mass spectroscopic techniques. The probe ANB was found to be an efficient 'turn-on' fluorescence chemosensor for the selective detection of Al3+ ion over other metal ions in an aqueous solution. The chemosensor exhibits ~ 27-fold enhancement of emission intensity in presence of Al3+ ion. Fluorescence quantum values for ANB and (Al3+-ANB)-complex are 0.004 and 0.097, respectively. In addition, the binding constant and the limit of detection were found to be 1.22 × 104 M-1 and 0.391 µM, respectively. The chemosensor ANB binds to Al3+ ions in 2:1 stoichiometric ratio which was supported by Job's plot, 1H-NMR titration and florescence titration. Fluorescence reversibility of the sensor complex was well established by adding EDTA in the same condition and a molecular INHIBIT logic gate was fabricated using this reversible nature of the sensor complex. Additionally, the chemosensor ANB shows a novel aggregation-induced enhanced emission phenomenon, where the aggregate hydrosol of ANB shows enhance emission intensity.
Collapse
Affiliation(s)
- Naren Mudi
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, WB, India
| | - Milan Shyamal
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, WB, India
| | - Prabhat Kumar Giri
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, WB, India
| | | | | | - Ajay Misra
- Department of Chemistry, Vidyasagar University, Midnapore, 721 102, WB, India.
| |
Collapse
|
3
|
Shi J, Zhou Y, Ning J, Hu G, Zhang Q, Hou Y, Zhou Y. Prepared carbon dots from wheat straw for detection of Cu 2+ in cells and zebrafish and room temperature phosphorescent anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121597. [PMID: 35820342 DOI: 10.1016/j.saa.2022.121597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/05/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The green synthesis of fluorescent carbon dots from biomass is critical for their sustainable application. Herein, using wheat straw as a single precursor, carbon dots (CDs) were prepared through a one-step carbonization process, and the obtained CDs have intense blue luminescence and excitation-independent photoluminescent behavior. The solution of CDs shows good biocompatibility, and low cytotoxicity successfully used as hopeful bioimaging and biosensing probe for Cu2+ in HepG2 cells and zebrafish. Based on CDs, boron-doped carbon dots with IPA shells (CDs@IPA) can be obtained by doping boron element and isophthalic acid (IPA) coating. CDs@IPA irradiated with different wavelength ultraviolet lamps shows different solid fluorescence, while turning off the ultraviolet lamp can produce green visible room temperature phosphorescence (RTP) to the naked eyes for 5 s. The two kinds of wheat straw-based carbon dots have bifunctional luminescence properties and can be used to detect Cu2+ and serve as RTP anti-counterfeiting signs to ensure information security.
Collapse
Affiliation(s)
- Jiahui Shi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yunhao Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Juan Ning
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Guizhen Hu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qingyou Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yabin Hou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Kumar M, Kumar A, Kishor S, Kumar S, Kumar A, Manav N, Bhagi A, Kumar S, John RP. N-diethylaminosalicylidene based “turn-on” fluorescent Schiff base chemosensor for Al3+ ion: Synthesis, characterisation and DFT/TD-DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Wang W, Zhang J, Tian P, Wang X, Qian W, Huang G, Liu X, Liu B. Ionic Liquid‐Functionalized CQDs as Effective “Signal‐Off” Fluorescence Nanoprobes for Selective and Sensitive Detection of Iron (III) and Chromium (VI). ChemistrySelect 2021. [DOI: 10.1002/slct.202102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wei Wang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University NO. 88 Anning West Road, Anning District Lanzhou 730070 P.R. China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University NO. 88 Anning West Road, Anning District Lanzhou 730070 P.R. China
| | - Pei Tian
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University NO. 88 Anning West Road, Anning District Lanzhou 730070 P.R. China
| | - Xiaojian Wang
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University NO. 88 Anning West Road, Anning District Lanzhou 730070 P.R. China
| | - Wenzhen Qian
- School of Environment and Municipal Engineering Lanzhou Jiaotong University NO. 88 Anning West Road, Anning District Lanzhou 730070 P.R. China
| | - Guowei Huang
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals Lanzhou University of Technology No.287 Langongping Road, Qilihe District Lanzhou 730050 P.R. China
| | - Xi Liu
- School of Materials Science and Engineering Lanzhou Jiaotong University NO. 88 Anning West Road, Anning District Lanzhou 730070 P.R. China
| | - Baoyong Liu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University NO. 88 Anning West Road, Anning District Lanzhou 730070 P.R. China
| |
Collapse
|
6
|
Huang S, Wang W, Cheng J, Zhou X, Xie M, Luo Q, Yang D, Zhou Y, Wen H, Xue W. Amino-functional carbon quantum dots as a rational nanosensor for Cu2+. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Supamas Danwittayakul, Phitchaya Muensri. Polyethyleneimine Coated Polyacrylonitrile Cellulose Membrane for Colorimetric Copper(II) Determination. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x20010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Potentiometric sensors arrays based on perfluorinated membranes and silica nanoparticles with surface modified by proton-acceptor groups, for the determination of aspartic and glutamic amino acids anions and potassium cations. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Varadaraju C, Tamilselvan G, Enoch IVMV, Srinivasadesikan V, Lee SL, Selvakumar PM. The first highly selective turn “ON” fluorescent sensor for vanadyl (VO2+) ions: DFT studies and molecular logic gate behavior. NEW J CHEM 2018. [DOI: 10.1039/c7nj04434h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first antipyrine-derived fluorescent chemosensor for highly selective and sensitive detection of vanadyl ions by an inhibited PET mechanism, with DFT studies.
Collapse
Affiliation(s)
| | - G. Tamilselvan
- Department of Chemistry
- Karunya University
- Coimbatore 641 114
- India
| | | | - V. Srinivasadesikan
- Centre of Excellence in Advanced Materials
- Division of Chemistry
- Vignan's Foundation for Science
- Technology and Research University (VFSTRU)
- Guntur 522 213
| | - Shyi-Long Lee
- Department of Chemistry and Biochemistry
- National Chung Cheng University
- Chia-Yi
- Taiwan
| | | |
Collapse
|
10
|
Ruo W, Guang-Qi J, Xiao-Hong L. Two 5,5′-methylenebis(salicylaldehyde)-based Schiff base fluorescent sensors for selective sensing of Al 3+ in DMSO/H 2 O solution. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Combination of Ultrasonic-Assisted Cloud Point Extraction with Flame AAS for Preconcentration and Determination of Trace Amounts of Silver and Cadmium in Dried Nut and Vegetable Samples. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0505-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
|