1
|
Kyrpel T, Saska V, de Poulpiquet A, Luglia M, Soric A, Roger M, Tananaiko O, Giudici-Orticoni MT, Lojou E, Mazurenko I. Hydrogenase-based electrode for hydrogen sensing in a fermentation bioreactor. Biosens Bioelectron 2023; 225:115106. [PMID: 36738732 DOI: 10.1016/j.bios.2023.115106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
The hydrogen-based economy will require not only sustainable hydrogen production but also sensitive and cheap hydrogen sensors. Commercially available H2 sensors are limited by either use of noble metals or elevated temperatures. In nature, hydrogenase enzymes present high affinity and selectivity for hydrogen, while being able to operate in mild conditions. This study aims at evaluating the performance of an electrochemical sensor based on carbon nanomaterials with immobilised hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus for H2 detection. The effect of various parameters, including the surface chemistry, dispersion degree and amount of deposited carbon nanotubes, enzyme concentration, temperature and pH on the H2 oxidation are investigated. Although the highest catalytic response is obtained at a temperature around 60 °C, a noticeable current can be obtained at room temperature with a low amount of protein less than 1 μM. An original pulse-strategy to ensure H2 diffusion to the bioelectrode allows to reach H2 sensitivity of 4 μA cm-2 per % H2 and a linear range between 1 and 20%. Sustainable hydrogen was then produced through dark fermentation performed by a synthetic bacterial consortium in an up-flow anaerobic packed-bed bioreactor. Thanks to the outstanding properties of the A. aeolicus hydrogenase, the biosensor was demonstrated to be quite insensitive to CO2 and H2S produced as the main co-products of the bioreactor. Finally, the bioelectrode was used for the in situ measurement of H2 produced in the bioreactor in steady-state.
Collapse
Affiliation(s)
- Tetyana Kyrpel
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, CS 70071, 13402, Marseille, CEDEX 09, France; Analytical Chemistry Department, Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka str, Kyiv, 01060, Ukraine
| | - Vita Saska
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, CS 70071, 13402, Marseille, CEDEX 09, France; Analytical Chemistry Department, Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka str, Kyiv, 01060, Ukraine
| | - Anne de Poulpiquet
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, CS 70071, 13402, Marseille, CEDEX 09, France
| | - Mathieu Luglia
- Aix-Marseille Univ, Centrale Marseille, CNRS, M2P2 UMR 7340, Europôle de l'Arbois, 13545, Aix en Provence, Cedex 4, France
| | - Audrey Soric
- Aix-Marseille Univ, Centrale Marseille, CNRS, M2P2 UMR 7340, Europôle de l'Arbois, 13545, Aix en Provence, Cedex 4, France
| | - Magali Roger
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, CS 70071, 13402, Marseille, CEDEX 09, France
| | - Oksana Tananaiko
- Analytical Chemistry Department, Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka str, Kyiv, 01060, Ukraine
| | - Marie Thérèse Giudici-Orticoni
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, CS 70071, 13402, Marseille, CEDEX 09, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, CS 70071, 13402, Marseille, CEDEX 09, France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, CS 70071, 13402, Marseille, CEDEX 09, France.
| |
Collapse
|
2
|
Monsalve K, Mazurenko I, Gutierrez-Sanchez C, Ilbert M, Infossi P, Frielingsdorf S, Giudici-Orticoni MT, Lenz O, Lojou E. Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases. ChemElectroChem 2016. [DOI: 10.1002/celc.201600460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karen Monsalve
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | | | - Marianne Ilbert
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Pascale Infossi
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Stefan Frielingsdorf
- Institute für Chemie, Sekretariat PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | | | - Oliver Lenz
- Institute für Chemie, Sekretariat PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| |
Collapse
|
3
|
Hiruma-Shimizu K, Shimizu H, Thompson GS, Kalverda AP, Patching SG. Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications. Mol Membr Biol 2016; 32:139-55. [DOI: 10.3109/09687688.2015.1125536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Hiroki Shimizu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido, Japan,
| | - Gary S. Thompson
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | - Arnout P. Kalverda
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK,
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK, and
| | | |
Collapse
|
5
|
Oteri F, Ciaccafava A, de Poulpiquet A, Baaden M, Lojou E, Sacquin-Mora S. The weak, fluctuating, dipole moment of membrane-bound hydrogenase from Aquifex aeolicus accounts for its adaptability to charged electrodes. Phys Chem Chem Phys 2015; 16:11318-22. [PMID: 24789038 DOI: 10.1039/c4cp00510d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[NiFe] hydrogenases from Aquifex aeolicus (AaHase) and Desulfovibrio fructosovorans (DfHase) have been mainly studied to characterize physiological electron transfer processes, or to develop biotechnological devices such as biofuel cells. In this context, it remains difficult to control the orientation of AaHases on electrodes to achieve a fast interfacial electron transfer. Here, we study the electrostatic properties of these two proteins based on microsecond-long molecular dynamics simulations that we compare to voltammetry experiments. Our calculations show weak values and large fluctuations of the dipole direction in AaHase compared to DfHase, enabling the AaHase to absorb on both negatively and positively charged electrodes, with an orientation distribution that induces a spread in electron transfer rates. Moreover, we discuss the role of the transmembrane helix of AaHase and show that it does not substantially impact the general features of the dipole moment.
Collapse
Affiliation(s)
- Francesco Oteri
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
6
|
Hamon C, Ciaccafava A, Infossi P, Puppo R, Even-Hernandez P, Lojou E, Marchi V. Synthesis and enzymatic photo-activity of an O2 tolerant hydrogenase-CdSe@CdS quantum rod bioconjugate. Chem Commun (Camb) 2015; 50:4989-92. [PMID: 24468861 DOI: 10.1039/c3cc49368g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication reports on the preparation of stable and photo-active nano-heterostructures composed of O2 tolerant [NiFe] hydrogenase extracted from the Aquifex aeolicus bacterium grafted onto hydrophilic CdSe/CdS quantum rods in view of the development of H2/O2 biofuel cells. The resulting complex is efficient towards H2 oxidation, displays good stability and new photosensitive properties.
Collapse
Affiliation(s)
- C Hamon
- Université Rennes 1, Institut des Sciences Chimiques de Rennes, CNRS UMR 6226 Campus de Beaulieu, 35042 Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Guiral M, Prunetti L, Aussignargues C, Ciaccafava A, Infossi P, Ilbert M, Lojou E, Giudici-Orticoni MT. The hyperthermophilic bacterium Aquifex aeolicus: from respiratory pathways to extremely resistant enzymes and biotechnological applications. Adv Microb Physiol 2013; 61:125-94. [PMID: 23046953 DOI: 10.1016/b978-0-12-394423-8.00004-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aquifex aeolicus isolated from a shallow submarine hydrothermal system belongs to the order Aquificales which constitute an important component of the microbial communities at elevated temperatures. This hyperthermophilic chemolithoautotrophic bacterium, which utilizes molecular hydrogen, molecular oxygen, and inorganic sulfur compounds to flourish, uses the reductive TCA cycle for CO(2) fixation. In this review, the intricate energy metabolism of A. aeolicus is described. As the chemistry of sulfur is complex and multiple sulfur species can be generated, A. aeolicus possesses a multitude of different enzymes related to the energy sulfur metabolism. It contains also membrane-embedded [NiFe] hydrogenases as well as oxidases enzymes involved in hydrogen and oxygen utilization. We have focused on some of these proteins that have been extensively studied and characterized as super-resistant enzymes with outstanding properties. We discuss the potential use of hydrogenases in an attractive H(2)/O(2) biofuel cell in replacement of chemical catalysts. Using complete genomic sequence and biochemical data, we present here a global view of the energy-generating mechanisms of A. aeolicus including sulfur compounds reduction and oxidation pathways as well as hydrogen and oxygen utilization.
Collapse
Affiliation(s)
- Marianne Guiral
- Unité de Bioénergétique et Ingénierie des Protéines, UMR7281-FR3479, CNRS, Aix-Marseille Université, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|