1
|
Martinez AA, Arneodo Larochette PP, Gennari FC, Gasnier A. The Structure-Function Relationship of Branched Polyethylenimine Impregnated over Mesoporous Carbon Aerogels: An In-Depth Thermogravimetric Insight. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17133-17145. [PMID: 37975861 DOI: 10.1021/acs.langmuir.3c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We present a comprehensive thermogravimetric analysis (TGA) of polyethylenimine (PEI)-impregnated resorcinol-formaldehyde (RF) aerogels. While numerous studies focus on PEI-impregnated SBA, RF materials have been less examined, despite their interest and specificities. As most articles on PEI-impregnated porous materials follow typical experimental methods defined for SBA, particularities of RF-PEI materials could remain unheeded. The design of nonisothermal TGA protocols, completed with nitrogen isotherms, based on the systematic filling of the matrix delivers a fundamental understanding of the relationship between the structure and function. This study demonstrates (i) the competition between the matrix and PEI for CO2-physisorption (φ) and CO2-chemisorption (χ), (ii) the hysteresis ([Formula: see text]) of CO2 capture at low temperature attributed to the kinetic (K) hindrance of CO2 diffusion (D) through PEI film/plugs limiting the chemisorption, and (iii) the thermodynamic (θ) equilibrium limiting the capture at high temperature. At variance with SBA-PEI materials, the first layers of PEI in RF are readily available for CO2 capture given that this matrix does not covalently bind PEI as SBA. A facile method allows the discrimination between physi- and chemisorption, exhibiting how the former decreases with PEI coverage. The CO2 capture hysteresis, while seldom introduced or discussed, underlines that the commonly accepted operating temperature of the "maximum capture" is based on an incomplete experiment. Through isotherm adsorption analysis, we correlate the evolution of this maximum to the morphological distribution of PEI. This contribution highlights the specificities of RF-PEI and the advantages of our TGA protocol in understanding the structure/function relationship of this kind of material by avoiding the typical direct applications of SBA-specific protocols. The method is straightforward, does not need large-scale facilities, and is applicable to other materials. Its easiness and rapidness are suited to high-volume studies, befitting for the comprehensive evaluation of interacting factors such as the matrix's nature, pore size, and PEI weight.
Collapse
Affiliation(s)
- Alejandra A Martinez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto de Nanociencia y Nanotecnología, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| | - Pierre P Arneodo Larochette
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| | - Fabiana C Gennari
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| | - Aurelien Gasnier
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto de Nanociencia y Nanotecnología, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| |
Collapse
|
2
|
Kim JE, Cho MH. Effects of Multiwall Carbon Nanotubes on Premature Kidney Aging: Biochemical and Histological Analysis. TOXICS 2023; 11:373. [PMID: 37112600 PMCID: PMC10143039 DOI: 10.3390/toxics11040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Carbon nanotubes (CNTs) have gained much attention due to their superb properties, which make them promising options for the reinforcing composite materials with desirable mechanical properties. However, little is known about the linkage between lung exposure to nanomaterials and kidney disease. In this study, we compared the effects on the kidneys and aging for two different types of multiwall carbon nanotubes (MWCNTs): pristine MWCNTs (PMWCNTs) and acid-treated MWCNTs (TMWCNTs), with TMWCNTs being the preferred form for use as a composite material due to its superior dispersion properties. We used tracheal instillation and maximum tolerated dose (MTD) for both types of CNTs. MTD was determined as a 10% weight loss dose in a 3-month subchronic study, and the appropriate dosage for 1-year exposure was 0.1 mg/mouse. Serum and kidney samples were analyzed using ELISA, Western blot, and immunohistochemistry after 6 months and 1 year of treatment. PMWCNT-administered mice showed the activation of pathways for inflammation, apoptosis, and insufficient autophagy, as well as decreased serum Klotho levels and increased serum levels of DKK-1, FGF-23, and sclerostin, while TMWCNTs did not. Our study suggests that lung exposure to PMWCNTs can induce premature kidney aging and highlights a possible toxic effect of using MWCNTs on the kidneys in the industrial field, further highlighting that dispersibility can affect the toxicity of the nanotubes.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- RNABIO, Seongnam 13201, Republic of Korea
| |
Collapse
|
3
|
Moscoso R, Barrientos C, Abarca S, Squella J. Electrochemical Characterization of Nitrocoumarin-modified Nanostructured Electrode Platforms: New precursors for the electrocatalysis of NADH. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Ansari S, Khorshidi A, Shariati S. Chemoselective reduction of nitro and nitrile compounds using an Fe3O4-MWCNTs@PEI-Ag nanocomposite as a reusable catalyst. RSC Adv 2020; 10:3554-3565. [PMID: 35497750 PMCID: PMC9048720 DOI: 10.1039/c9ra09561f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
Chemoselective reductions by an Fe3O4-MWCNTs@PEI-Ag nanocomposite.
Collapse
Affiliation(s)
- Sara Ansari
- Department of Chemistry
- Faculty of Sciences
- University of Guilan
- Iran
| | | | - Shahab Shariati
- Department of Chemistry
- Rasht Branch
- Islamic Azad University
- Rasht
- Iran
| |
Collapse
|
5
|
Wang C, Gong W, Lu X, Xiang Y, Ji P. Heparin Immobilized on Multiwalled Carbon Nanotubes for Catalytic Conversion of Fructose in Water with High Yield and Selectivity. ACS OMEGA 2019; 4:16808-16815. [PMID: 31646226 PMCID: PMC6796884 DOI: 10.1021/acsomega.9b01607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Being a member of the glycosaminoglycan family of carbohydrates, native heparin is a highly sulfated polysaccharide. Herein, heparin was grafted onto polydopamine (PDA)- and poly(ethylene imine) (PEI)-coated multiwalled carbon nanotubes (MWCNTs) (heparin-PEI@PDA@MWCNT). The immobilized heparin consists of a sulfated repeating disaccharide unit, conferring a unique microenvironment when catalyzing fructose dehydration into 5-hydroxymethylfurfural (HMF). The hydrogen bonding interactions naturally occur between the disaccharide unit of heparin and the monosaccharide fructose, and the adjacent sulfonic acid groups catalyze the fructose dehydration. The reactions were performed in water, and heparin-PEI@PDA@MWCNT achieved an HMF yield of 46.2% and an HMF selectivity of 82.2%. For the dehydration of fructose in water, heparin-PEI@PDA@MWCNT exhibits advantages over published heterogeneous catalysts on the basis of HMF yield and HMF selectivity. Three aspects contribute to the environmentally benign processing: (1) the catalyst heparin is a natural sulfated polysaccharide; (2) the catalysis is carried out in water and not in organic solvents; and (3) fructose can be produced from a biomass resource.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Gong
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyuan Lu
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Xiang
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peijun Ji
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Blandón-Naranjo L, Della Pelle F, Vázquez MV, Gallego J, Santamaría A, Alzate-Tobón M, Compagnone D. Electrochemical Behaviour of Microwave-assisted Oxidized MWCNTs Based Disposable Electrodes: Proposal of a NADH Electrochemical Sensor. ELECTROANAL 2018. [DOI: 10.1002/elan.201700674] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lucas Blandón-Naranjo
- Grupo Interdisciplinario de Estudios Moleculares-GIEM.; Instituto de Química; Universidad de Antioquia. Calle; 67 No. 53-108, A.A 1226 Medellín Colombia
| | - Flavio Della Pelle
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment; University of Teramo; 64023 Teramo Italy
| | - Mario V. Vázquez
- Grupo Interdisciplinario de Estudios Moleculares-GIEM.; Instituto de Química; Universidad de Antioquia. Calle; 67 No. 53-108, A.A 1226 Medellín Colombia
| | - Jaime Gallego
- Química de Recursos Energéticos y Medio Ambiente-QUIREMA.; Instituto de Química; Universidad de Antioquia. Calle; 70 No. 52-21, A.A 1226 Medellín Colombia
| | - Alexander Santamaría
- Química de Recursos Energéticos y Medio Ambiente-QUIREMA.; Instituto de Química; Universidad de Antioquia. Calle; 70 No. 52-21, A.A 1226 Medellín Colombia
| | - Manuela Alzate-Tobón
- Química de Recursos Energéticos y Medio Ambiente-QUIREMA.; Instituto de Química; Universidad de Antioquia. Calle; 70 No. 52-21, A.A 1226 Medellín Colombia
| | - Dario Compagnone
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment; University of Teramo; 64023 Teramo Italy
| |
Collapse
|
7
|
Shin J, Choi EJ, Cho JH, Cho AN, Jin Y, Yang K, Song C, Cho SW. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Biomacromolecules 2017; 18:3060-3072. [PMID: 28876908 DOI: 10.1021/acs.biomac.7b00568] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electrically conductive hyaluronic acid (HA) hydrogels incorporated with single-walled carbon nanotubes (CNTs) and/or polypyrrole (PPy) were developed to promote differentiation of human neural stem/progenitor cells (hNSPCs). The CNT and PPy nanocomposites, which do not easily disperse in aqueous phases, dispersed well and were efficiently incorporated into catechol-functionalized HA (HA-CA) hydrogels by the oxidative catechol chemistry used for hydrogel cross-linking. The prepared electroconductive HA hydrogels provided dynamic, electrically conductive three-dimensional (3D) extracellular matrix environments that were biocompatible with hNSPCs. The HA-CA hydrogels containing CNT and/or PPy significantly promoted neuronal differentiation of human fetal neural stem cells (hfNSCs) and human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) with improved electrophysiological functionality when compared to differentiation of these cells in a bare HA-CA hydrogel without electroconductive motifs. Calcium channel expression was upregulated, depolarization was activated, and intracellular calcium influx was increased in hNSPCs that were differentiated in 3D electroconductive HA-CA hydrogels; these data suggest a potential mechanism for stem cell neurogenesis. Overall, our bioinspired, electroconductive HA hydrogels provide a promising cell-culture platform and tissue-engineering scaffold to improve neuronal regeneration.
Collapse
Affiliation(s)
- Jisoo Shin
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Eun Jung Choi
- Department of Chemistry, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Jung Ho Cho
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University , Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
|
9
|
Hong L, Zhou F, Wang G, Zhang X. Synthesis and sensing integration: A novel enzymatic reaction modulated Nanoclusters Beacon (NCB) "Illumination" strategy for label-free biosensing and logic gate operation. Biosens Bioelectron 2016; 86:588-594. [PMID: 27453987 DOI: 10.1016/j.bios.2016.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 01/13/2023]
Abstract
A novel fluorescent label-free "turn-on" NAD(+) and adenosine triphosphate (ATP) biosensing strategy is proposed by fully exploiting ligation triggered Nanocluster Beacon (NCB). In the presence of the target, the split NCB was brought to intact, which brought the C-rich sequence and enhancer sequence in close proximity resulting in the lightening of dark DNA/AgNCs ("On" mode). Further application was presented for logic gate operation and aptasensor construction. The feasibility was investigated by Ultraviolet-visible spectroscopy (UV-vis), Fluorescence, lifetime and High Resolution Transmission Electron Microscopy (HRTEM) etc. The strategy displayed good performance in the detection of NAD(+) and ATP, with the detection limit of 0.002nM and 0.001mM, the linear range of 10-1000nM and 0.003-0.01mM, respectively. Due to the DNA/AgNCs as fluorescence reporter, the completely label-free fluorescent strategy boasts the features of simplicity and low cost, and showing little reliance on the sensing environment. Meanwhile, the regulation by overhang G-rich sequence not relying on Förster energy transfer quenching manifests the high signal-to-background ratios (S/B ratios). This method not only provided a simple, economical and reliable fluorescent NAD(+) assay but also explored a flexible G-rich sequence regulated NCB probe for the fluorescent biosensors. Furthermore, this sensing mode was expanded to the application of a logic gate design, which exhibited a high performance for not only versatile biosensors construction but also for molecular computing application.
Collapse
Affiliation(s)
- Lu Hong
- Key Laboratory of Functional Molecular Solids, Wuhu, Anhui Province, 241000 PR China; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000 PR China; Key Laboratory of Chem-Biosensing, Wuhu, Anhui Province, 241000 PR China
| | - Fu Zhou
- Key Laboratory of Functional Molecular Solids, Wuhu, Anhui Province, 241000 PR China; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000 PR China; Key Laboratory of Chem-Biosensing, Wuhu, Anhui Province, 241000 PR China
| | - Guangfeng Wang
- Key Laboratory of Functional Molecular Solids, Wuhu, Anhui Province, 241000 PR China; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000 PR China; Key Laboratory of Chem-Biosensing, Wuhu, Anhui Province, 241000 PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 PR China.
| | - Xiaojun Zhang
- Key Laboratory of Functional Molecular Solids, Wuhu, Anhui Province, 241000 PR China; College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000 PR China; Key Laboratory of Chem-Biosensing, Wuhu, Anhui Province, 241000 PR China
| |
Collapse
|
10
|
Eguílaz M, Gutierrez F, González-Domínguez JM, Martínez MT, Rivas G. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors. Biosens Bioelectron 2016; 86:308-314. [PMID: 27387261 DOI: 10.1016/j.bios.2016.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/28/2022]
Abstract
We report for the first time the use of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr) (SWCNT-Polytyr) as a new electrode material for the development of nicotinamide adenine dinucleotide (NADH)-based biosensors. The oxidation of glassy carbon electrodes (GCE) modified with SWCNT-Polytyr at potentials high enough to oxidize the tyrosine residues have allowed the electrooxidation of NADH at low potentials due to the catalytic activity of the quinones generated from the primary oxidation of tyrosine without any additional redox mediator. The amperometric detection of NADH at 0.200V showed a sensitivity of (217±3)µAmM(-1)cm(-2) and a detection limit of 7.9nM. The excellent electrocatalytic activity of SWCNT-Polytyr towards NADH oxidation has also made possible the development of a sensitive ethanol biosensor through the immobilization of alcohol dehydrogenase (ADH) via Nafion entrapment, with excellent analytical characteristics (sensitivity of (5.8±0.1)µAmM(-1)cm(-2), detection limit of 0.67µM) and very successful application for the quantification of ethanol in different commercial beverages.
Collapse
Affiliation(s)
- Marcos Eguílaz
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Fabiana Gutierrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Jose Miguel González-Domínguez
- Grupo de nanoestructuras de carbono y Nanotecnología, Departamento de Nanotecnología, Instituto de Carboquímica (CSIC), 50018 Zaragoza, Spain
| | - María T Martínez
- Grupo de nanoestructuras de carbono y Nanotecnología, Departamento de Nanotecnología, Instituto de Carboquímica (CSIC), 50018 Zaragoza, Spain.
| | - Gustavo Rivas
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
11
|
Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation. Talanta 2016; 147:453-9. [DOI: 10.1016/j.talanta.2015.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/23/2022]
|
12
|
Sintesis dan Karakterisasi CNT (Carbon Nanotube) Berdopan Logam Kobalt. JURNAL KIMIA SAINS DAN APLIKASI 2014. [DOI: 10.14710/jksa.17.3.80-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Telah dilakukan penelitian sintesis dan karakterisasi CNT (Carbon Nanotube) dengan doping logam kobalt. Penelitian ini bertujuan untuk menentukan karakter CNT sebelum dan setelah didoping dengan variasi konsentrasi logam 10%, 20%, 30%, 40% dan 50%. Metode yang digunakan pada penelitian ini adalah impregnasi basah yang meliputi perendaman pada larutan logam dan kalsinasi. Hasil impregnasi dianalisis menggunakan Fourier Transform-Infra Red (FT-IR), GSA (Gas Sorption Analysis), Scanning Electron Microscopy (SEM) dan Energy Dispersive X-Ray Spectroscopy (EDS). Analisis FT-IR menunjukkan adanya vibrasi ulur dari ikatan Co-C dan Co-O. Hasil GSA menunjukkan bahwa CNT loading 30% mempunyai luas permukaan tertinggi yaitu 69,192 m2/g. Hasil SEM-EDS menunjukkan bahwa morfologi permukaan dinding CNT ditutupi aggregat-aggregat kobalt. Pada hasil EDS fraksi kobalt dihasilkan adalah 1,96 % yang nilainya tidak jauh berbeda dari fraksi Fe yaitu 1,49%. Hal ini menunjukkan bahwa CNT doping logam Co menggunakan metode impregnasi basah tidak efektif.
Collapse
|
13
|
Goran JM, Favela CA, Stevenson KJ. Investigating the Electrocatalytic Oxidation of Dihydronicotinamide Adenine Dinucleotide at Nitrogen-Doped Carbon Nanotube Electrodes: Implications to Electrochemically Measuring Dehydrogenase Enzyme Kinetics. ACS Catal 2014. [DOI: 10.1021/cs5006794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jacob M. Goran
- Department of Chemistry,
Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Carlos A. Favela
- Department of Chemistry,
Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Keith J. Stevenson
- Department of Chemistry,
Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
14
|
Gasnier A, González-Domínguez JM, Ansón-Casaos A, Hernández-Ferrer J, Pedano ML, Rubianes MD, Martínez MT, Rivas G. Single-Wall Carbon Nanotubes Covalently Functionalized with Polylysine: Synthesis, Characterization and Analytical Applications for the Development of Electrochemical (Bio)Sensors. ELECTROANAL 2014. [DOI: 10.1002/elan.201400108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Carrara S, Baj-Rossi C, Boero C, De Micheli G. Do Carbon Nanotubes contribute to Electrochemical Biosensing? Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Cao Z, Wang P, Qiu X, Lau C, Lu J. Ligation-triggered fluorescent silver nanoclusters system for the detection of nicotinamide adenine dinucleotide. Anal Bioanal Chem 2014; 406:1895-902. [PMID: 24442015 DOI: 10.1007/s00216-013-7609-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/25/2013] [Accepted: 12/29/2013] [Indexed: 01/08/2023]
Abstract
Herein, we demonstrate a novel silver nanocluster-based fluorescent system for the detection of nicotinamide adenine dinucleotide (NAD(+)), an important biological small molecule involved in a wide range of biological processes. A single-stranded dumbbell DNA probe was designed and used for the assay, which contained a nick in the stem, a poly-cytosine nucleotide loop close to 5' end as the template for the formation of highly fluorescent silver nanoclusters (Ag NCs) and another loop close to 3' end. Only in the presence of NAD(+), the probe was linked at 5' and 3' ends by Escherichia coli DNA ligase, which blocked the DNA polymerase-based extension reaction, ensuring the formation of fluorescent Ag NCs. This technique provided a logarithmic linear relationship in the range of 1 pM-500 nM with a detection limit of as low as 1 pM NAD(+), and exhibited high selectivity against its analogues, and was then successfully used for the detection of NAD(+) level in four kinds of cell homogenates. In addition, this new approach was conducted in an isothermal and homogeneous condition without the need of any thermal cycling, washing, and separation steps, making it very simple. Overall, this label-free protocol offers a promising alternative for the detection of NAD(+), taking advantage of specificity, sensitivity, cost-efficiency, and simplicity.
Collapse
Affiliation(s)
- Zhijuan Cao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | | | | | | | | |
Collapse
|
17
|
Primo E, Gutierrez F, Luque G, Dalmasso P, Gasnier A, Jalit Y, Moreno M, Bracamonte M, Rubio ME, Pedano M, Rodríguez M, Ferreyra N, Rubianes M, Bollo S, Rivas G. Comparative study of the electrochemical behavior and analytical applications of (bio)sensing platforms based on the use of multi-walled carbon nanotubes dispersed in different polymers. Anal Chim Acta 2013; 805:19-35. [DOI: 10.1016/j.aca.2013.10.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/29/2013] [Accepted: 10/21/2013] [Indexed: 01/06/2023]
|
18
|
Goran JM, Favela CA, Stevenson KJ. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide at nitrogen-doped carbon nanotube electrodes. Anal Chem 2013; 85:9135-41. [PMID: 23991631 DOI: 10.1021/ac401784b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen-doped carbon nanotubes (N-CNTs) substantially lower the overpotential necessary for dihydronicotinamide adenine dinucleotide (NADH) oxidation compared to nondoped CNTs or traditional carbon electrodes such as glassy carbon (GC). We observe a 370 mV shift in the peak potential (Ep) from GC to CNTs and another 170 mV shift from CNTs to 7.4 atom % N-CNTs in a sodium phosphate buffer solution (pH 7.0) with 2.0 mM NADH (scan rate 10 mV/s). The sensitivity of 7.4 atom % N-CNTs to NADH was measured at 0.30 ± 0.04 A M(-1) cm(-2), with a limit of detection at 1.1 ± 0.3 μM and a linear range of 70 ± 10 μM poised at a low potential of -0.32 V (vs Hg/Hg2SO4). NADH fouling, known to occur to the electrode surface during NADH oxidation, was investigated by measuring both the change in Ep and the resulting loss of electrode sensitivity. NADH degradation, known to occur in phosphate buffer, was characterized by absorbance at 340 nm and correlated with the loss of NADH electroactivity. N-CNTs are further demonstrated to be an effective platform for dehydrogenase-based biosensing by allowing glucose dehydrogenase to spontaneously adsorb onto the N-CNT surface and measuring the resulting electrode's sensitivity to glucose. The glucose biosensor had a sensitivity of 0.032 ± 0.003 A M(-1) cm(-2), a limit of detection at 6 ± 1 μM, and a linear range of 440 ± 50 μM.
Collapse
Affiliation(s)
- Jacob M Goran
- Department of Chemistry and Biochemistry, Center for Electrochemistry, Center for Nano- and Molecular Science and Technology, The University of Texas at Austin , 1 University Station, A5300, Austin, Texas 78712, United States
| | | | | |
Collapse
|
19
|
Shieh YT, Tu YY, Wang TL, Lin RH, Yang CH, Twu YK. Apparent electrocatalytic activities of composites of self-doped polyaniline, chitosan, and carbon nanotubes. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Bozal-Palabiyik B, Dogan-Topal B, Uslu B, Can A, Ozkan SA. Sensitive voltammetric assay of etoposide using modified glassy carbon electrode with a dispersion of multi-walled carbon nanotube. J Solid State Electrochem 2013. [DOI: 10.1007/s10008-013-2184-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Wang SM, Cheng HH, Lai KF, Cheng SH. Surface redox-mediated dihydronicotinamide adenine dinucleotide probes based on ionic liquids covalently bound with catechol functionality. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|