1
|
Feng J, Qi J. Facile synthesis of graphene oxide coated 3D bimetallic oxide MnO2/Bi2O3 microspheres for voltammetric detection of cadmium ion in water. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.124007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
An optical and electrochemical sensor based on L-arginine functionalized reduced graphene oxide. Sci Rep 2022; 12:19398. [PMID: 36371538 PMCID: PMC9653396 DOI: 10.1038/s41598-022-23949-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
The electrochemical and photochemical properties of graphene derivatives could be significantly improved by modifications in the chemical structure. Herein, reduced graphene oxide (RGO) was functionalized with L-arginine (L-Arg) by an amidation reaction between the support and amino acid. Deposition of a powerful ligand, L-Arg, on the optically active support generated an effective optical chemosensor for the determination of Cd(II), Co(II), Pb(II), and Cu(II). In addition, L-Arg-RGO was used as an electrode modifier to fabricate L-Arg-RGO modified glassy-carbon electrode (L-Arg-RGO/GCE) to be employed in the selective detection of Pb(II) ions by differential pulse anodic stripping voltammetry (DP-ASV). L-Arg-RGO/GCE afforded better results than the bare GCE, RGO/GCE, and L-Arg functionalized graphene quantum dot modified GCE. The nanostructure of RGO, modification by L-Arg, and homogeneous immobilization of resultant nanoparticles at the electrode surface are the reasons for outstanding results. The proposed electrochemical sensor has a wide linear range with a limit of detection equal to 0.06 nM, leading to the easy detection of Pb(II) in the presence of other cations. This research highlighted that RGO as a promising support of optical, and electrochemical sensors could be used in the selective, and sensitive determination of transition metals depends on the nature of the modifier. Moreover, L-Arg as an abundant amino acid deserves to perch on the support for optical, and electrochemical determination of transition metals.
Collapse
|
3
|
Li G, Qi X, Xiao Y, Zhao Y, Li K, Xia Y, Wan X, Wu J, Yang C. An Efficient Voltammetric Sensor Based on Graphene Oxide-Decorated Binary Transition Metal Oxides Bi 2O 3/MnO 2 for Trace Determination of Lead Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3317. [PMID: 36234444 PMCID: PMC9565483 DOI: 10.3390/nano12193317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Herein we present a facile synthesis of the graphene oxide-decorated binary transition metal oxides of Bi2O3 and MnO2 nanocomposites (Bi2O3/MnO2/GO) and their applications in the voltammetric detection of lead ions (Pb2+) in water samples. The surface morphologies, crystal structures, electroactive surface area, and charge transferred resistance of the Bi2O3/MnO2/GO nanocomposites were investigated through the scanning electron microscopy (SEM), power X-ray diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques, respectively. The Bi2O3/MnO2/GO nanocomposites were further decorated onto the surface of a glassy carbon electrode (GCE), and Pb2+ was quantitatively analyzed by using square-wave anodic stripping voltammetry (SWASV). We explored the effect of the analytical parameters, including deposition potential, deposition time, and solution pH, on the stripping peak current of Pb2+. The Bi2O3/MnO2/GO nanocomposites enlarged the electroactive surface area and reduced the charge transferred resistance by significant amounts. Moreover, the synergistic enhancement effect of MnO2, Bi2O3 and GO endowed Bi2O3/MnO2/GO/GCE with extraordinary electrocatalytic activity toward Pb2+ stripping. Under optimal conditions, the Bi2O3/MnO2/GO/GCE showed a broad linear detection range (0.01-10 μM) toward Pb2+ detection, with a low limit of detection (LOD, 2.0 nM). The proposed Bi2O3/MnO2/GO/GCE electrode achieved an accurate detection of Pb2+ in water with good recoveries (95.5-105%).
Collapse
Affiliation(s)
- Guangli Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Xiaoman Qi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yang Xiao
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuchi Zhao
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Kanghua Li
- Department of Neurology, Zhuzhou People’s Hospital, Zhuzhou 412008, China
| | - Yonghui Xia
- Zhuzhou Institute for Food and Drug Control, Zhuzhou 412011, China
| | - Xuan Wan
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Jingtao Wu
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Chun Yang
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
4
|
Chen SH, Song ZY, Li PH, Xiao XY, Huang HQ, Yang M, Lin CH, Li LN, Huang XJ. Boosting sensitive and selective detection toward Pb(II) via activation effect of Co and orbital coupling between Pb and O over Co@Co 3O 4 nanocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126157. [PMID: 34492937 DOI: 10.1016/j.jhazmat.2021.126157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Fruitful achievements on electrochemical detection toward Pb(II) have been achieved, and their good performance is generally attributed to the adsorption property of nanomaterials. However, the design of sensing interfaces from the electronic structure and electron transfer process is limited. Here, Co@Co3O4 acquired an ultra-high detection sensitivity of 103.11 µA µM-1 toward Pb(II), outperforming the results previously reported. The interfacial oxygen atoms build an electron bridge for Co activating Co3O4. Particularly, new energy levels of oxygen atoms were generated and matched with that of Pb(II). The strong orbital coupling effect between O and Pb makes the Co@Co3O4 sensitive and selective toward Pb(II). Compared with Co metal and Co3O4, Pb(II) got more electrons from Co@Co3O4, and longer Pb-O bonds were formed, allowing more Pb(II) to be catalyzed and reduced. Also, the superior stability and reproducibility of electrochemical detection make electrodes practicably. This work reveals that metals can stimulate intrinsically catalytic activity of their metal oxides, with the generation of orbit energy levels that match to a specific analyte. It provides a promising strategy for constructing sensitive and selective sensing interfaces toward ultra-low concentration analyte in body fluid and other complex samples.
Collapse
Affiliation(s)
- Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hong-Qi Huang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Chu-Hong Lin
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Li-Na Li
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Hadidi M, Ahour F, Keshipour S. Electrochemical determination of trace amounts of lead ions using D-penicillamine-functionalized graphene quantum dot-modified glassy carbon electrode. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02367-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Gupta AK, Khanna M, Roy S, Pankaj, Nagabooshanam S, Kumar R, Wadhwa S, Mathur A. Design and development of a portable resistive sensor based on α-MnO 2 /GQD nanocomposites for trace quantification of Pb(II) in water. IET Nanobiotechnol 2021; 15:505-511. [PMID: 34694759 PMCID: PMC8675782 DOI: 10.1049/nbt2.12042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
The occurrence of heavy metal ions in food chain is appearing to be a major problem for mankind. The traces of heavy metals, especially Pb(II) ions present in water bodies remains undetected, untreated, and it remains in the food cycle causing serious health hazards for human and livestock. The consumption of Pb(II) ions may lead to serious medical complications including multiple organ failure which can be fatal. The conventional methods of heavy metal detection are costly, time-consuming and require laboratory space. There is an immediate need to develop a cost-effective and portable sensing system which can easily be used by the common man without any technical knowhow. A portable resistive device with miniaturized electronics is developed with microfluidic well and α-MnO2 /GQD nanocomposites as a sensing material for the sensitive detection of Pb(II). α-MnO2 /GQD nanocomposites which can be easily integrated with the miniaturized electronics for real-time on-field applications. The proposed sensor exhibited a tremendous potential to be integrated with conventional water purification appliances (household and commercial) to give an indication of safety index for the drinking water. The developed portable sensor required low sample volume (200 µL) and was assessed within the Pb(II) concentration range of 0.001 nM to 1 uM. The Limit of Detection (LoD) and sensitivity was calculated to be 0.81 nM and 1.05 kΩ/nM/mm2 , and was validated with the commercial impedance analyser. The shelf-life of the portable sensor was found to be ∼45 days.
Collapse
Affiliation(s)
- Amit K. Gupta
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
| | - Mansi Khanna
- Department of Electronics and Communication EngineeringAmity School of EngineeringAmity UniversityUttar PradeshIndia
| | - Souradeep Roy
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
| | - Pankaj
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
| | | | - Ranjit Kumar
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
- Department of Chemistry, School of EngineeringUniversity of Petroleum and Energy StudiesBidholi CampusDehradunIndia
| | - Shikha Wadhwa
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
- Department of Chemistry, School of EngineeringUniversity of Petroleum and Energy StudiesBidholi CampusDehradunIndia
| | - Ashish Mathur
- Amity Institute of NanotechnologyAmity UniversityUttar PradeshIndia
- Department of Physics, School of EngineeringUniversity of Petroleum and Energy StudiesBidholi CampusDehradunIndia
| |
Collapse
|
7
|
Bojdi MK, Behbahani M, Ranjbari S. Developing an Electrochemical Sensor Based on Modified Siliceous Mesocellular Foam for Efficient and Easy Monitoring of Cadmium Ions. ChemistrySelect 2020. [DOI: 10.1002/slct.202000553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Majid K. Bojdi
- Department of ChemistryFaculty of ScienceUniversity of Birjand Birjand South Khorasan Iran
| | - Mohammad Behbahani
- Faculty of EngineeringShohadaye Hoveizeh University of Technology Dasht-e Azadegan, Susangerd Iran
| | - Somaye Ranjbari
- Department of ChemistryFaculty of ScienceUniversity of Birjand Birjand South Khorasan Iran
| |
Collapse
|
8
|
Zhang W, Fan S, Li X, Liu S, Duan D, Leng L, Cui C, Zhang Y, Qu L. Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metal-organic frameworks. Mikrochim Acta 2019; 187:69. [PMID: 31853726 DOI: 10.1007/s00604-019-4044-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023]
Abstract
A glassy carbon electrode (GCE) was modified with a composite prepared from phytic acid, polypyrrole and a ZIF type metal-organic framework (PA/PPy)/ZIF-8@ZIF-67). The nanocomposite was prepared by in-situ chemical polymerization in the presence of ferric chloride and subsequently functionalized with PA to form PA/PPy/ZIF-8@ZIF-67. The materials were characterized by XRD, FT-IR, BET, XPS, SEM and TEM. The modified GCE was applied to individual and simultaneous detection of Pb(II) and Cu(II), with peak voltages of -0.6 and - 0.1 V, respectively (vs. SCE). The amount of PPy, the ZIF-8@ZIF-67 concentration, polymerization potential, polymerization time and pH value were optimized. Under optimized conditions, the calibration plots have two linear ranges. These are from 0.02 to 200 μM and from 200 to 600 μM for Pb(II), and from 0.2 to 200 μM and 200 to 600 μM for Cu(II). The detection limits are 2.9 nM and 14.8 nM, respectively. Simultaneous detection of Pb(II) and Cu(II) is also demonstrated. The good performance of the electrode is attributed to the large surface area of ZIF-8@ZIF-67, the good electrical conductivity of PPy, and the metal complexation power of PA. The modified GCE was successfully applied to the determination of Pb(II) and Cu(II) in real samples and gave satisfactory recoveries. Graphical abstractSchematic presentation of the construction process of PA/PPy/ZIF-8@ZIF-67/GCE sensor, and the mechanism of Pb(II) and Cu(II) at the prepared sensor.
Collapse
Affiliation(s)
- Wanqing Zhang
- College of Food Science and Technonlogy, Henan University of Technology, Zhengzhou, 450001, China.,School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shumin Fan
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinli Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Dawei Duan
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Leipeng Leng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Chengxing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yuping Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lingbo Qu
- College of Food Science and Technonlogy, Henan University of Technology, Zhengzhou, 450001, China. .,School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Antunović V, Ilić M, Baošić R, Jelić D, Lolić A. Synthesis of MnCo2O4 nanoparticles as modifiers for simultaneous determination of Pb(II) and Cd(II). PLoS One 2019; 14:e0210904. [PMID: 30726233 PMCID: PMC6364896 DOI: 10.1371/journal.pone.0210904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/03/2019] [Indexed: 12/03/2022] Open
Abstract
The porous spinel oxide nanoparticles, MnCo2O4, were synthesized by citrate gel combustion technique. Morphology, crystallinity and Co/Mn content of modified electrode was characterized and determined by Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction pattern analysis (XRD), simultaneous thermogravimetry and differential thermal analysis (TG/DTA). Nanoparticles were used for modification of glassy carbon electrode (GCE) and new sensor was applied for simultaneous determination of Pb(II) and Cd(II) ions in water samples with the linear sweep anodic stripping voltammetry (LSASV).The factors such as pH, deposition potential and deposition time are optimized. Under optimal conditions the wide linear concentration range from 0.05 to 40 μmol/dm3was obtained for Pb(II), with limit of detection (LOD) of 8.06 nmol/dm3 and two linear concentration ranges were obtained for Cd(II), from 0.05 to 1.6 μmol/dm3 and from 1.6 to 40 μmol/dm3, with calculated LOD of 7.02 nmol/dm3. The selectivity of the new sensor was investigated in the presence of interfering ions. The sensor is stable and it gave reproducible results. The new sensor was succesfully applied on determination of heavy metals in natural waters.
Collapse
Affiliation(s)
- Vesna Antunović
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Marija Ilić
- University of Belgrade—Faculty of Mining and Geology, Belgrade, Serbia
| | - Rada Baošić
- Department of Analytical Chemistry, University of Belgrade—Faculty of Chemistry, Belgrade, Serbia
| | - Dijana Jelić
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Aleksandar Lolić
- Department of Analytical Chemistry, University of Belgrade—Faculty of Chemistry, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
10
|
Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal Chim Acta 2017; 990:11-53. [DOI: 10.1016/j.aca.2017.07.069] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 02/01/2023]
|
11
|
Yun-fei Z, Maimaiti H, Bo Z. Preparation of cellulose-based fluorescent carbon nanoparticles and their application in trace detection of Pb(ii). RSC Adv 2017. [DOI: 10.1039/c6ra26684c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanocrystalline cellulose (NCC) with a particle size of 23.80 ± 0.33 nm was prepared from microcrystalline cellulose by a mixed treatment with acids and ultrasound.
Collapse
Affiliation(s)
- Zhang Yun-fei
- Institute of Chemistry and Chemical Industry
- Xinjiang University
- Urumqi 830046
- China
| | - Halidan Maimaiti
- Institute of Chemistry and Chemical Industry
- Xinjiang University
- Urumqi 830046
- China
| | - Zhang Bo
- Institute of Chemistry and Chemical Industry
- Xinjiang University
- Urumqi 830046
- China
| |
Collapse
|
12
|
Jović A, Đorđević A, Čebela M, Stojković Simatović I, Hercigonja R, Šljukić B. Composite zeolite/carbonized polyaniline electrodes for p–nitrophenol sensing. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
|
14
|
Adarakatti PS, Malingappa P. Amino-calixarene-modified graphitic carbon as a novel electrochemical interface for simultaneous measurement of lead and cadmium ions at picomolar level. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3306-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Zhang H, Shuang S, Wang G, Guo Y, Tong X, Yang P, Chen A, Dong C, Qin Y. TiO2–graphene hybrid nanostructures by atomic layer deposition with enhanced electrochemical performance for Pb(ii) and Cd(ii) detection. RSC Adv 2015. [DOI: 10.1039/c4ra09779c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene coated with TiO2 by atomic layer deposition exhibits markedly enhanced sensitivity for detection of heavy metal ions.
Collapse
Affiliation(s)
- Hongfen Zhang
- School of Pharmaceutical Science
- Shanxi Medical University
- Taiyuan 030001
- China
- Institute of Environmental Science
| | - Shaomin Shuang
- Institute of Environmental Science
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Guizhen Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Yujing Guo
- Institute of Environmental Science
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Xili Tong
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Peng Yang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Anjia Chen
- School of Pharmaceutical Science
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Chuan Dong
- Institute of Environmental Science
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- China
| | - Yong Qin
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| |
Collapse
|
16
|
Stanković DM, Škrivanj S, Savić N, Nikolić AS, Vulić P, Manojlović DD. Application of Novel Zn-Ferrite Modified Glassy Carbon Paste Electrode as a Sensor for Determination of Cd(II) in Waste Water. ELECTROANAL 2014. [DOI: 10.1002/elan.201400095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Micić D, Šljukić B, Zujovic Z, Travas-Sejdic J, Ćirić-Marjanović G. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Afkhami A, Khoshsafar H, Bagheri H, Madrakian T. Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 35:8-14. [DOI: 10.1016/j.msec.2013.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/10/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
19
|
Song Q, Li M, Huang L, Wu Q, Zhou Y, Wang Y. Bifunctional polydopamine@Fe3O4 core–shell nanoparticles for electrochemical determination of lead(II) and cadmium(II). Anal Chim Acta 2013; 787:64-70. [DOI: 10.1016/j.aca.2013.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/02/2013] [Accepted: 06/12/2013] [Indexed: 12/01/2022]
|
20
|
Šljukić B, Santos D, Sequeira C. Manganese dioxide electrocatalysts for borohydride fuel cell cathodes? J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.01.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|