1
|
Govindaraj M, Sriram B, Wang SF, Muthukumaran MK, Kogularasu S, Chang-Chien GP, Arockia Selvi J.. Surfactant-Assisted Synthesis of Metallic-Ag/Nickel Oxide on Graphitic Carbon Nitride Composite: An Electrochemical Investigation of Synthetic Vanillin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11287-11299. [PMID: 39914860 PMCID: PMC11843540 DOI: 10.1021/acsami.4c19099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/18/2024] [Accepted: 01/31/2025] [Indexed: 02/21/2025]
Abstract
In this study, we developed a sensor based on surfactant-assisted synthesis of metallic silver-enriched nickel oxide confined on graphitic carbon nitride (Ag/NiO/g-CN)-modified electrode to construct a sensitive and selective voltammetric sensor for detecting vanillin in confectionaries samples. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analyses confirmed the crystal structure and respective functional groups of the synthesized Ag/NiO/g-CN composite. The valence states of silver, nickel, oxygen, carbon, and nitrogen were analyzed using X-ray photoelectron spectroscopy (XPS), while energy-dispersive X-ray analysis (EDX) and morphological investigations revealed the elemental distribution and nano-structured particles, respectively. The electrocatalyst-modified electrode properties and electrochemical sensing performances were evaluated using different voltammetric and spectroscopic techniques. The Ag/NiO/g-CN composite, exhibiting a large active surface area, excellent conductivity, and synergistic interaction, proved to be a suitable electrode material for electrochemical sensor applications. The sensor demonstrated a detection limit of 0.9 nM and a broad linear range of 0.004-366.8 μM. Electrochemical investigations further highlighted the sensor's excellent reproducibility, repeatability, fast response, and functional stability. The constructed sensor also exhibited outstanding selectivity against potential interferents and demonstrated its practical applicability by successfully detecting vanillin in spiked food samples.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur-603203, Tamil Nadu, India
| | - Balasubramanian Sriram
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department
of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Magesh Kumar Muthukumaran
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur-603203, Tamil Nadu, India
| | - Sakthivel Kogularasu
- Super
Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center
for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Guo-Ping Chang-Chien
- Super
Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Center
for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Institute
of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Arockia Selvi J.
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur-603203, Tamil Nadu, India
| |
Collapse
|
2
|
Well-dispersed poly(cysteine)-Ni(OH)2 nanocomposites on graphene-modified electrode surface for highly sensitive non-enzymatic glucose detection. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
A novel non-enzymatic glucose electrochemical sensor based on CNF@Ni-Co layered double hydroxide modified glassy carbon electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Chawla M, Randhawa JK, Siril PF. Calcination temperature as a probe to tune the non-enzymatic glucose sensing activity of Cu–Ni bimetallic nanocomposites. NEW J CHEM 2017. [DOI: 10.1039/c6nj03920k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A seven-fold increase in the glucose sensing activity of CuO–NiO bimetallic nanocomposites was induced via calcination.
Collapse
Affiliation(s)
- Mohit Chawla
- Advanced Materials Research Centre
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi
- India
| | | | - Prem Felix Siril
- Advanced Materials Research Centre
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi
- India
| |
Collapse
|
5
|
Derikvand Z, Azadbakht A, Olmstead MM, Karimi Z, Gharamaleki JA. Synthesis, spectroscopic and crystal structure of a new 2D coordination polymer of Ni(II) constructed by naphthalene-1,4-dicarboxylic acid; Nanomolar detection of fructose at a nano-structured Ni(II) coordination polymer multiwall carbon nanotube. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-015-0766-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Yan S, Li X, Xiong Y, Wang M, Yang L, Liu X, Li X, Alshahrani LAM, Liu P, Zhang C. Simultaneous determination of ascorbic acid, dopamine and uric acid using a glassy carbon electrode modified with the nickel(II)-bis(1,10-phenanthroline) complex and single-walled carbon nanotubes. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1776-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Hui Y, Ma X, Qu F, Chen F, Yu J, Gao Y. Electropolymerization of carboxymethyl-β-cyclodextrin based on co-electrodeposition gold nanoparticles electrode: electrocatalysis and nonenzymatic glucose sensing. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3119-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Sonkar PK, Ganesan V, John SA, Yadav DK, Gupta R. Non-enzymatic electrochemical sensing platform based on metal complex immobilized carbon nanotubes for glucose determination. RSC Adv 2016. [DOI: 10.1039/c6ra16064f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nickel salophen (where salophen is N,N′-bis(salicylidene)-1,2-phenylenediamine) is immobilized on multiwall carbon nanotubes. This new material is utilized for electrocatalytic oxidization and sensitive determination of glucose in human blood samples.
Collapse
Affiliation(s)
- Piyush Kumar Sonkar
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - Vellaichamy Ganesan
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| | - S. Abraham John
- Department of Chemistry
- Gandhigram Rural Institute
- Gandhigram-624302
- India
| | | | - Rupali Gupta
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi-221005
- India
| |
Collapse
|
9
|
Rick J, Tsai MC, Hwang BJ. Biosensors Incorporating Bimetallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 6:E5. [PMID: 28344262 PMCID: PMC5302532 DOI: 10.3390/nano6010005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today's society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.
Collapse
Affiliation(s)
- John Rick
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Meng-Che Tsai
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Bing Joe Hwang
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.
| |
Collapse
|
10
|
Azadbakht A, Abbasi AR, Derikvand Z, Amraei S. Surface decoration of Au–Pt bimetallic inorganic–organic hybrid nanocomposite modified carbon ceramic electrode with vanadium N-salicylidene-L-histidine–al-MCM-41 for electrooxidation of thiosulphate. RUSS J ELECTROCHEM+ 2015. [DOI: 10.1134/s1023193515090025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode – Towards a novel non-enzymatic glucose sensor. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.04.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Xue S, Yi H, Jing P, Xu W. Dendritic Pt@Au nanowires as nanocarriers and signal enhancers for sensitive electrochemical detection of carcinoembryonic antigen. RSC Adv 2015. [DOI: 10.1039/c5ra15038h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An electrochemical aptasensor for the sensitive and selective determination of carcinoembryonic antigen was constructed based on dendritic Pt@AuNWs as nanocarriers and signal enhancers.
Collapse
Affiliation(s)
- Shuyan Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Huayu Yi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Pei Jing
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Wenju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
13
|
Xiao C, Zou Q, Tang Y. Surface nitrogen-enriched carbon nanotubes for uniform dispersion of platinum nanoparticles and their electrochemical biosensing property. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.07.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Li Y, Xu C, Li H, Wang H, Wu D, Ma H, Cai Y, Du B, Wei Q. Nonenzymatic immunosensor for detection of carbohydrate antigen 15-3 based on hierarchical nanoporous PtFe alloy. Biosens Bioelectron 2014; 56:295-9. [DOI: 10.1016/j.bios.2014.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 11/30/2022]
|
15
|
Covalent attachment of Ni-2,3-pyrazine dicarboxylic acid onto gold nanoparticle gold electrode modified with penicillamine- CdS quantum dots for electrocatalytic oxidation and determination of urea. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|