1
|
Rafiq Q, Khan MT, Hayat SS, Azam S, Rahman AU, Elansary HO, Shan M. Adsorption and solar light activity of noble metal adatoms (Au and Zn) on Fe(111) surface: a first-principles study. Phys Chem Chem Phys 2024; 26:17118-17131. [PMID: 38845366 DOI: 10.1039/d3cp04504h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Noble metals such as gold (Au), zinc (Zn), and iron (Fe) are highly significant in both fundamental and technological contexts owing to their applications in optoelectronics, optical coatings, transparent coatings, photodetectors, light-emitting devices, photovoltaics, nanotechnology, batteries, and thermal barrier coatings. This study presents a comprehensive investigation of the optoelectronic properties of Fe(111) and Au, Zn/Fe(111) materials using density functional theory (DFT) first-principles method with a focus on both materials' spin orientations. The optoelectronic properties were obtained employing the generalized gradient approximation (GGA) and the full-potential linearized augmented plane wave (FP-LAPW) approach, integrating the exchange-correlation function with the Hubbard potential U for improved accuracy. The arrangement of Fe(111) and Au, Zn/Fe(111) materials was found to lack an energy gap, indicating a metallic behavior in both the spin-up state and the spin-down state. The optical properties of Fe(111) and Au, Zn/Fe(111) materials, including their absorption coefficient, reflectivity, energy-loss function, refractive index, extinction coefficient, and optical conductivity, were thoroughly examined for both spin channels in the spectral region from 0.0 eV to 14 eV. The calculations revealed significant spin-dependent effects in the optical properties of the materials. Furthermore, this study explored the properties of the electronic bonding between several species in Fe(111) and Au, Zn/Fe(111) materials by examining the density distribution mapping of charge within the crystal symmetries.
Collapse
Affiliation(s)
- Qaiser Rafiq
- Department of Physics, International Islamic University, Islamabad, 44000, Pakistan.
| | - Muhammad Tahir Khan
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
- School of computer science and technology, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Sardar Sikandar Hayat
- Department of Physics, International Islamic University, Islamabad, 44000, Pakistan.
| | - Sikander Azam
- Faculty of engineering and applied sciences, Riphah International University, Islamabad 44000, Pakistan.
| | - Amin Ur Rahman
- Faculty of engineering and applied sciences, Riphah International University, Islamabad 44000, Pakistan.
| | - Hosam O Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Shan
- Materials simulation Research Laboratory (MSRL), Institute of Physics, Bahauddin Zakariya University Multan, Multan, 60800, Pakistan
| |
Collapse
|
2
|
Fernández-Félix TC, Santana JA. Atomic Structures of Single-Layer Nanoislands of Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au Supported on Au(111) from Density Functional Theory Calculations. SURFACE SCIENCE 2022; 716:121960. [PMID: 34737461 PMCID: PMC8562674 DOI: 10.1016/j.susc.2021.121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have used density functional theory calculations to study the atomic structure of single-layer nanoislands of metal M (M=Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au) supported on M(111) and Au(111) surfaces. Nanoislands of Cu, Pd, Ag, Pt, and Au have planar structures on Au(111), while nanoislands of Ni, Rh, and Ir are nonplanar. The calculations also show that nanoislands of Cu, Pd, Pt, and Au on Au(111) with a diameter below 3 nm can have one of several atomic structures. Two of these structures have atoms at the edges of the nanoislands located near bridge sites on Au(111), and the other structures have atoms at the edges and center of the nanoislands located near bridge sites. The relative stability of these atomic structures depends on the size and nature of the Au-supported nanoparticles. Our findings provided computational support for the work of Liao and Ya [J. Phys. Chem. C. 121 (2017) 19218-19225] reporting the formation of two phases of Pt nanoislands on Au(111). These findings also reveal the rich and complex atomic structures of small single-layer metal nanoislands supported on metal surfaces.
Collapse
|
3
|
Vázquez-Lizardi GA, Ruiz-Casanova LA, Cruz-Sánchez RM, Santana JA. Simulation of Metal-Supported Metal-Nanoislands: A Comparison of DFT Methods. SURFACE SCIENCE 2021; 712:121889. [PMID: 34176977 PMCID: PMC8224827 DOI: 10.1016/j.susc.2021.121889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have evaluated various density functional theory (DFT) methods to simulate geometric, energetic, electronic, and hydrogen adsorption properties of metal-nanoparticles supported on metal surfaces. We used Pt and Pd nanoislands on Au(111) as model systems. The evaluated DFT methods include GGA (PW91, PBE, RPBE, revPBE, and PBESol), GGA with van der Waals (vdW) corrected (PBE-D3), GGA with optimized vdW functionals (revPBE-vdW), meta-GGA (SCAN and MS2), and the machine learning-based method BEEF-vdW. The results show that the various DFT methods yield similar geometric and electronic properties for Pt (or Pd) nanoislands on Au(111). The DFT methods also produce similar relative energetics for small Pt (or Pd) clusters with different conformations on Au(111). The results show that a triatomic cluster of Pt on Au(111) is more stable with a linear conformation. In contrast, a triatomic cluster of Pd is more stable with a triangular conformation. For clusters with four or more atoms, Pt and Pd clusters on Au(111) prefer non-linear conformation. We found that the various DFT methods yield different results only for the adsorption energy of hydrogen.
Collapse
Affiliation(s)
| | | | | | - Juan A. Santana
- Department of Chemistry, University of Puerto Rico at Cayey, Cayey, Puerto Rico, 00737
| |
Collapse
|
4
|
Bedoch AM, Koga GY, Nogueira RP, Zepon G. On the electrochemical hydrogenation of Nb: An insight into the effect of hydrogen absorption on the kinetics of the hydrogen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Santana JA, Meléndez-Rivera J. Hydrogen Adsorption on Au-Supported Pt and Pd Nanoislands: A Computational Study of Hydrogen Coverage Effects. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:5110-5115. [PMID: 34178204 PMCID: PMC8225257 DOI: 10.1021/acs.jpcc.0c11566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have studied the dissociative adsorption of hydrogen under high coverage conditions of adsorbed hydrogen on Pd and Pt nanoislands supported on Au(111) using Density Functional Theory calculations. The results reveal that for Pd/Au(111), the free energy of hydrogen adsorption ΔG is close to 0 kJ/mol when the coverage of adsorbed hydrogen is near 1 ML, where the available catalytic sites are located at the edges of the Pd nanoislands. In the case of Pt/Au(111), ΔG ≈ 0 kJ/mol under a broad range of hydrogen coverage conditions, from 1 ML to 3 ML, depending on the size of the Pt nanoislands. This is the case because the available catalytic sites are located at both the steps and terraces of Pt nanoislands. These findings indicate that Au surfaces with Pd or Pt nanoislands offer catalytic sites with ΔG ≈ 0 for hydrogen reactions, one key factor for an ideal electrocatalyst for hydrogen reactions.
Collapse
|
6
|
Santana JA, Cruz B, Melendez-Rivera J, Rösch N. Strain and Low-Coordination Effects on Monolayer Nanoislands of Pd and Pt on Au(111): A Comparative Analysis Based on Density Functional Results. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:13225-13230. [PMID: 32952771 PMCID: PMC7500701 DOI: 10.1021/acs.jpcc.0c03151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Recent experiments demonstrated that the catalytic centers for the hydrogen evolution reaction (HER) are different on Pd and Pt nanoislands on Au(111). Inspired by these experiments, we examined the geometric, energetic, electronic and hydrogen adsorption properties of monolayer model nanoislands of Pd and Pt supported on Au(111) with density functional theory calculations. Accordingly, Au-tensile strain effects can be nearly 50% larger on the geometric structure of nanoislands of Pd on Au(111) than their Pt analogs, resulting on different electronic properties for these nanoislands. Despite these differences between Pd and Pt nanoisland on Au(111), our computational modelling of the hydrogen adsorption suggests that the unique catalytic centers for the HER on Pd and Pt nanoislands supported on Au(111) derive from the existence of low-coordinated adsorption sites and the intrinsic properties of Pd and Pt, but not from Au-tensile strain effects.
Collapse
Affiliation(s)
- Juan A. Santana
- Department of Chemistry, University of Puerto Rico at Cayey, Cayey, Puerto Rico 00737
- Department Chemie & Catalysis Research Center, Technische Universität München, 85747 Garching, Germany
| | - Bryan Cruz
- Department of Chemistry, University of Puerto Rico at Cayey, Cayey, Puerto Rico 00737
| | | | - Notker Rösch
- Department Chemie & Catalysis Research Center, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
7
|
Zhu J, Hu L, Zhao P, Lee LYS, Wong KY. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem Rev 2019; 120:851-918. [DOI: 10.1021/acs.chemrev.9b00248] [Citation(s) in RCA: 946] [Impact Index Per Article: 157.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Zhu
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P. R. China
| | - Liangsheng Hu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Pengxiang Zhao
- Institute of Materials, China Academy of Engineering Physics, No. 9, Huafengxincun, Jiangyou City, Sichuan Province 621908, P. R. China
| | - Lawrence Yoon Suk Lee
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
8
|
Mello GAB, Busó-Rogero C, Herrero E, Feliu JM. Glycerol electrooxidation on Pd modified Au surfaces in alkaline media: Effect of the deposition method. J Chem Phys 2019; 150:041703. [DOI: 10.1063/1.5048489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gisele A. B. Mello
- Instituto de Electroquímica, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
- Curso de Licenciatura em Química, Instituto de Ciências da Educação, Universidade Federal do Oeste do Pará, Avenida Marechal Rondon, s/n, 68040-070 Santarém, PA, Brazil
| | - Carlos Busó-Rogero
- Instituto de Electroquímica, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | - J. M. Feliu
- Instituto de Electroquímica, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
9
|
Sarkar S, Peter SC. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00042e] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The electrochemical hydrogen evolution reaction (HER) is a well-studied reaction which involves the reduction of protons for hydrogen production. Pd-based compounds are expected to have activity on par with or better than the expensive state-of-the-art Pt and can be considered as the future materials for the HER.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore
- India
- School of Advanced Materials
| | - Sebastian C. Peter
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore
- India
- School of Advanced Materials
| |
Collapse
|
10
|
Cheng C, Shah SSA, Najam T, Qi X, Wei Z. Improving the electrocatalytic activity for hydrogen evolution reaction by lowering the electrochemical impedance of RuO2/Ni-P. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Begum H, Ahmed MS, Jeon S. Highly Efficient Dual Active Palladium Nanonetwork Electrocatalyst for Ethanol Oxidation and Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39303-39311. [PMID: 29068660 DOI: 10.1021/acsami.7b09855] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tunable palladium nanonetwork (PdNN) has been developed for catalyzing ethanol oxidation reaction (EOR) and hydrogen evolution reaction (HER) in alkaline electrolyte. 3D PdNN is regarded as a dual active electrocatalyst for both EOR and HER for energy conversion application. The PdNN has been synthesized by the simple chemical route with the assistance of zinc precursor and a surfactant (i.e., cetyltrimethylammonium bromide, CTAB). The thickness of the network can be tuned by simply adjusting the concentration of CTAB. Both EOR and HER have been performed in an alkaline electrolyte, and characterized by different voltammetric methods. The 3D PdNN has shown 2.2-fold higher electrochemical surface area than the commercially available Pt/C including other tested catalysts with minimal Pd loading. As a result, it provides a higher density of EOR and HER active sites and facilitated the electron transport. For example, it shows 2.6-fold higher mass activity with significantly lower CO2 production for EOR and the similar overpotential (110 mV @ 10 mA cm-2) for HER compared to Pt/C with better reaction kinetics for both reactions. Thus, the PdNN is proved as an efficient electrocatalyst with better electrocatalytic activity and stability than state-of-the-art Pt/C for both EOR and HER because of the crystalline, monodispersed, and support-free porous nanonetwork.
Collapse
Affiliation(s)
- Halima Begum
- Department of Chemistry and Institute of Basic Science, Chonnam National University , Gwangju 500-757, Republic of Korea
| | - Mohammad Shamsuddin Ahmed
- Department of Chemistry and Institute of Basic Science, Chonnam National University , Gwangju 500-757, Republic of Korea
| | - Seungwon Jeon
- Department of Chemistry and Institute of Basic Science, Chonnam National University , Gwangju 500-757, Republic of Korea
| |
Collapse
|
12
|
Štrbac S, Srejić I, Rakočević Z. Catalysis of oxygen reduction on electrochemically activated polycrystalline gold by Pd nanoislands in alkaline solution. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Štrbac S, Smiljanić M, Rakočević Z. Electrocatalysis of hydrogen evolution on polycrystalline palladium by rhodium nanoislands in alkaline solution. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.07.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Duan J, Chen S, Jaroniec M, Qiao SZ. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00991] [Citation(s) in RCA: 699] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jingjing Duan
- School
of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Sheng Chen
- School
of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mietek Jaroniec
- Department
of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44240, United States
| | - Shi Zhang Qiao
- School
of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
15
|
Ding ZB, Wu F, Wang YC, Jiang H. Theoretical studies of the work functions of Pd-based bimetallic surfaces. J Chem Phys 2015; 142:214706. [DOI: 10.1063/1.4921895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhao-Bin Ding
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Wu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yue-Chao Wang
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hong Jiang
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Electrochemical studies of Fe and Pd deposition and their influence on the co-deposition of the Fe–Pd alloy. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2014.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
|
18
|
Štrbac S, Srejić I, Smiljanić M, Rakočević Z. The effect of rhodium nanoislands on the electrocatalytic activity of gold for oxygen reduction in perchloric acid solution. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Smiljanić M, Srejić I, Grgur B, Rakočević Z, Štrbac S. Hydrogen evolution on Au(111) catalyzed by rhodium nanoislands. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2012.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|