1
|
Zhu X, Xiao L, Ding Y, Zhang J, Jiang Y. The chloroperoxidase immobilized on porous carbon nanobowls for the detection of trichloroacetic acid by electroenzymatic synergistic catalysis. ENVIRONMENTAL RESEARCH 2023; 234:116590. [PMID: 37423369 DOI: 10.1016/j.envres.2023.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Trichloroacetic acid (TCA), as a by-product of chlorination disinfection, is a highly carcinogenic chemical. Due to the widespread use of chlorination disinfection, it is critical to detect TCA in drinking water to decrease the incidence of disease. In this work, we developed an efficient TCA biosensor via electroenzymatic synergistic catalysis. The porous carbon nanobowls (PCNB) are prepared and wrapped by an amyloid like proteins formed by phase-transitioned lysozyme (PTL-PCNB), then, chloroperoxidase (CPO) is abounding to PTL-PCNB owing to its strong adhesion. The ionic liquid of 1-ethyl-3-methylimidazolium bromide (ILEMB) is co-immobilized on PTL-PCNB to from CPO-ILEMB@PTL-PCNB nanocomposite to assist the direct electron transfer (DET) of CPO. The PCNB plays two roles here. In addition, to increasing the conductivity, it serves as an ideal support for holding CPO; The CPO-ILEMB@PTL-PCNB nanocomposite modified electrode presents high efficiency for sensing TCA. Through electroenzymatic synergistic catalysis, a wide detection range of 33 μmol L-1 to 98 mmol L-1 can be achieved with a low detection limit of 5.9 μmol L-1, and high stability, selectivity as well as reproducibility, which ensures its potential practical applicability. This work provides a new platform for the electro-enzyme synergistic catalysis in one pot.
Collapse
Affiliation(s)
- Xuefang Zhu
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, PR China.
| | - Ling Xiao
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, PR China.
| | - Yu Ding
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, PR China.
| | - Jing Zhang
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, PR China.
| | - Yucheng Jiang
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, 710119, PR China.
| |
Collapse
|
2
|
Ni J, Liu Y, Shen C, Chen D, Xin Y, Liu Q. Bioinformatics, bacterial expression and enzyme activity analyses of dichloromethane dehalogenase from Methylobacterium rhodesianum H13. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1818622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Jianguo Ni
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Department of Linpu Environmental Protection, Hangzhou Ecological Environment Bureau of Xiaoshan Branch, Hangzhou, Zhejiang, PR China
| | - Ying Liu
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Chenjia Shen
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Dongzhi Chen
- Department of Environmental Engineering, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, PR China
| | - Yueyong Xin
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Qi Liu
- Department of Environmental Engineering, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
3
|
Zhang J, Ji Q, Lan H, Zhang G, Liu H, Qu J. Synchronous Reduction-Oxidation Process for Efficient Removal of Trichloroacetic Acid: H* Initiates Dechlorination and ·OH Is Responsible for Removal Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14586-14594. [PMID: 31762267 DOI: 10.1021/acs.est.9b05389] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Degradation of chlorinated disinfection by-products using the electroreduction process has been considered as a promising approach for advanced water treatment, while the removal efficiency is restricted by a high barrier for dechlorination of intermediates only by reductive atomic hydrogen (H*) and excessive cost required for reducing atmosphere. In this paper, we predict that the dechlorination efficiency for trichloroacetic acid (TCA), a typical chlorinated disinfection by-product, can be accelerated via a synchronous reduction-oxidation process, where the dechlorination barrier can be lowered by the oxidation reactions toward the critical intermediates using hydroxyl radicals (·OH). Based on scientific findings, we constructed a synchronous reduction-oxidation platform using a Pd-loaded Cu/Cu2O/CuO array as the core component. According to the combined results of theoretical and experimental analyses, we found that the high dispersion of nano-sized Pd on a photocathode was beneficial for the production of a high concentration of H* at low overpotential, a perquisite for initiating the dechlorination reaction. Simultaneously, excess H* has the potential to convert O2 to H2O2 in ambient conditions (air condition), and H2O2 can be further activated by a Cu-containing substrate to ·OH for attacking the critical intermediates. In this system, ∼89.1% of TCA was completely dechlorinated and ∼26.8% mineralization was achieved in 60 min, which was in contrast to the value of ∼65.7% and mineralization efficiency of only ∼1.7% achieved through the reduction process (Ar condition).
Collapse
Affiliation(s)
- Jun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , China
- Key Laboratory of Drinking Water Science and Technology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
4
|
A Polypyrrole-Modified Pd-Ag Bimetallic Electrode for the Electrocatalytic Reduction of 4-Chlorophenol. Catalysts 2019. [DOI: 10.3390/catal9110931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A polypyrrole-modified bimetallic electrode composed of Pd-Ag on a Ti substrate (Pd-Ag/PPY/Ti) was successfully prepared via a chemical deposition method, and was applied to the electrocatalytic hydrodechlorination of 4-chlorophenol (4-CP) in aqueous solution. The electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Various influences on the dechlorination efficiency of 4-chlorophenol, including applied current, initial pH value, and temperature, were studied. The dechlorination efficiency of 4-CP reached 94% within 120 min under the optimum conditions, i.e., a dechlorination current of 6 mA, an initial pH of 2.30, and a temperature of 303 K. The apparent activation energy of the dechlorination of 4-CP by the Pd-Ag/PPY/Ti electrode was calculated to be 49.6 kJ/mol. The equivalent conversion rate constant kPd was 0.63 L.gPd−1·min−1, which was higher than the findings presented in comparable literature. Thus, a highly effective bimetallic electrode with promising application prospects and low Pd loading was fabricated.
Collapse
|
5
|
Hu Y, Lü A, Wang M, Wang D, Liu J, Wang Z, Gong X. Electrochemical behaviors of anode materials and their performance for bauxite desulfurization. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Eguílaz M, Villalonga R, Rivas G. Electrochemical biointerfaces based on carbon nanotubes-mesoporous silica hybrid material: Bioelectrocatalysis of hemoglobin and biosensing applications. Biosens Bioelectron 2018; 111:144-151. [DOI: 10.1016/j.bios.2018.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023]
|
7
|
Baghayeri M, Veisi H. Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens Bioelectron 2015; 74:190-8. [DOI: 10.1016/j.bios.2015.06.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/22/2015] [Accepted: 06/07/2015] [Indexed: 01/10/2023]
|
8
|
Ge L, Gong X, Wang Z, Zhao L, Wang Y, Wang M. Sulfur removal from bauxite water slurry (BWS) electrolysis intensified by ultrasonic. ULTRASONICS SONOCHEMISTRY 2015; 26:142-148. [PMID: 25818363 DOI: 10.1016/j.ultsonch.2015.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
Effects of ultrasonic on desulfurization ratio from bauxite water slurry (BWS) electrolysis in NaOH solution were examined under constant current. The results indicated that ultrasonic improved the desulfurization ratio at high temperatures because of the diffusion and transfer of oxygen gas in electrolyte. However, due to the increase in oxygen gas emission, ultrasonic could not improve the desulfurization ratio obviously at low temperatures. Additionally, the particle size of bauxite became fine in the presence of ultrasonic, indicating that the mass transfer of FeS2 phase was improved. According to the polarization curves, the current density increased in the presence of ultrasonic, indicating that the mass transfer of liquid phase was improved. The apparent activation energy (AAE) of electrode reaction revealed that ultrasonic did not change the pathway of water electrolysis. However, ultrasonic changed the pathway of BWS electrolysis, converting indirect oxidation into direct oxidation. The AAE of BWS electrolysis in the presence of ultrasonic was higher than that in the absence of ultrasonic. And the low AAEs (less than 20 kJ/mol) clearly indicated the diffusion control during BWS electrolysis reaction.
Collapse
Affiliation(s)
- Lan Ge
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Xuzhong Gong
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Zhi Wang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lixin Zhao
- Department of Environment Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yuhua Wang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Mingyong Wang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
9
|
Xu Y, Ding X, Ma H, Chu Y, Ma C. Selective hydrodechlorination of 3,5,6-trichloropicolinic acid at an activated silver cathode: Synthesis of 3,5-dichloropicolinic acid. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Kong F, Wang A, Ren HY, Huang L, Xu M, Tao H. Improved dechlorination and mineralization of 4-chlorophenol in a sequential biocathode-bioanode bioelectrochemical system with mixed photosynthetic bacteria. BIORESOURCE TECHNOLOGY 2014; 158:32-38. [PMID: 24583212 DOI: 10.1016/j.biortech.2014.01.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
A new approach that improved the dechlorination and mineralization of 4-chlorophenol (4-CP) was demonstrated in a sequential biocathode-bioanode bioelectrochemical system (BES) with mixed photosynthetic bacteria (PSB). The biocathode with additional PSB inoculation showed higher 4-CP dechlorination efficiency (DE) and maximum current (81.8 ± 2.9%, 0.021 ± 0.002A) than that at abiotic cathode (45.3 ± 3.7%, 0.011 ± 0.002A) (P<0.005). Light response in biocathode BES with or without PSB ascertained the important role of PSB played in the dechlorination and current generation. Dechlorination and mineralization of 4-CP was achieved in the sequential biocathode-bioanode BES, which could be further enhanced with PSB inoculation in both cathode chamber and anode chamber. 4-CP DE in the cathode chamber was improved from 55.0 ± 2.0% to 78.8 ± 4.9%, and the phenol degradation in the anode chamber was improved from 65.3 ± 2.1% to 71.3 ± 1.4%. This study directed a new way for improving dechlorination at biocathode and product degradation at bioanode with PSB inoculation in BES.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, 100 Central Xianlie Road, Guangzhou 510070, China
| | - Huchun Tao
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
11
|
Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1060-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|