1
|
Lin M, Zhou Y, Bu L, Bai C, Tariq M, Wang H, Han J, Huang X, Zhou X. Single-Nanoparticle Coulometry Method with High Sensitivity and High Throughput to Study the Electrochemical Activity and Oscillation of Single Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007302. [PMID: 33719172 DOI: 10.1002/smll.202007302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/16/2021] [Indexed: 06/12/2023]
Abstract
To explore nanocatalysts with high electro-catalytic performance and less loading of precious metals, efforts have been made to develop electrochemical methods with high spatial resolution at the single nanoparticle level. Herein, a highly sensitive single-nanoparticle coulometry method is successfully developed to study the electrochemical activity and oscillation of single PtTe nanocatalysts. Based on microbattery reactions involving the formic acid electro-oxidation and the deposition of Ag on the single PtTe nanocatalyst surface, this method enables the transition from the undetectable sub-fA electric signal of the formic acid electro-oxidation into strong localized surface plasmon resonance scattering signal of Ag detected by dark-field microscopy. The lowest limiting current for a single nanocatalyst is found to be as low as 25.8 aA. Different trends of activity versus the formic acid concentration and types of activity of the single nanocatalyst have been discovered. Unveiled frequency-amplitude graph shows that the two electrochemical oscillation modes of low frequency with high amplitude and vice versa coexist in a single PtTe nanocatalyst, indicating the abundantly smooth surfaces and defects of nanocatalysts. This conducted study will open up the new avenue for further behavioral and mechanistic investigation of more types of nanocatalysts in the electrochemistry community.
Collapse
Affiliation(s)
- Mohan Lin
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yingke Zhou
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Materials Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lingzheng Bu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chuang Bai
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Muhammad Tariq
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Huihui Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jinli Han
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaochun Zhou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
3
|
Kang M, Momotenko D, Page A, Perry D, Unwin PR. Frontiers in Nanoscale Electrochemical Imaging: Faster, Multifunctional, and Ultrasensitive. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7993-8008. [PMID: 27396415 DOI: 10.1021/acs.langmuir.6b01932] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A wide range of interfacial physicochemical processes, from electrochemistry to the functioning of living cells, involve spatially localized chemical fluxes that are associated with specific features of the interface. Scanning electrochemical probe microscopes (SEPMs) represent a powerful means of visualizing interfacial fluxes, and this Feature Article highlights recent developments that have radically advanced the speed, spatial resolution, functionality, and sensitivity of SEPMs. A major trend has been a coming together of SEPMs that developed independently and the use of established SEPMs in completely new ways, greatly expanding their scope and impact. The focus is on nanopipette-based SEPMs, including scanning ion conductance microscopy (SICM), scanning electrochemical cell microscopy (SECCM), and hybrid techniques thereof, particularly with scanning electrochemical microscopy (SECM). Nanopipette-based probes are made easily, quickly, and cheaply with tunable characteristics. They are reproducible and can be fully characterized. Their response can be modeled in considerable detail so that quantitative maps of chemical fluxes and other properties (e.g., local charge) can be obtained and analyzed. This article provides an overview of the use of these probes for high-speed imaging, to create movies of electrochemical processes in action, to carry out multifunctional mapping such as simultaneous topography-charge and topography-activity, and to create nanoscale electrochemical cells for the detection, trapping, and analysis of single entities, particularly individual molecules and nanoparticles (NPs). These studies provide a platform for the further application and diversification of SEPMs across a wide range of interfacial science.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Dmitry Momotenko
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Ashley Page
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick , Coventry CV4 7AL, United Kingdom
| |
Collapse
|
4
|
Carminati M, Ferrari G, Vergani M, Sampietro M. The role of micro-scale current sensing in biomedicine: A unifying view and design guidelines. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3201-4. [PMID: 26736973 DOI: 10.1109/embc.2015.7319073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The electrical activity of cells is regulated by ion fluxes and chemical signaling between them is sustained by redox-reactive molecules. Consequently, current sensing represents a straightforward way to interface electronics with biology and a common detection tool in several applications spanning from patch-clamp and nanopores to micro-scale impedance tracking. Reaching pA resolution at the ms timescale represents a challenge for the readout circuit and here all the criticalities involved in the optimal design of the sensing electrode are reviewed. Advantages vs. drawbacks and risks of the use of silicon as active vs. passive substrate respectively are illustrated by means of experimental examples.
Collapse
|