1
|
Nguyen JH, Rana A, Dick JE. Amplifying the electrochemical footprint of <1000 molecules in a dissolving microdroplet. Analyst 2024; 149:4222-4229. [PMID: 38869006 PMCID: PMC11299638 DOI: 10.1039/d4an00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The ability of analytical strategies to detect and positively identify molecules under extremely dilute conditions is important for the growth and expansion of analytical techniques and instrumentation. At present, few measurement science techniques can robustly approach the measurement of just a few thousand molecules. Here, we present an electrochemical platform for the detection and positive identification of fewer than 1000 molecules of decamethylferrocene ((Cp*)2FeII). We achieve this remarkable detection threshold by trapping (Cp*)2FeII in a 1,2-dichloroethane microdroplet, which is allowed to dissolve into an aqueous continuous phase while on a gold microelectrode (radius ∼6.25 μm). Because electrochemistry is not sensitive enough to observe the charge of less than 1000 molecules, we dissolved μM amounts hexacyanoferrate(III) in the aqueous continuous phase. The biphasic reaction between hexacyanoferrate(III) and Cp2*(Fe)II allows for a feedback loop when the microelectrode is biased sufficiently negative to reduce Cp2*(Fe)III. This feedback loop, a typical EC' catalytic mechanism, amplifies the electrochemical signal of Cp2*(Fe)II when the droplet is of small enough dimensions for feedback to occur. Our results demonstrate that clever biphasic reactions can be coupled with dissolving microdroplets to access extremely low limits of quantitation in electroanalysis.
Collapse
Affiliation(s)
- James H Nguyen
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Tricase A, Imbriano A, Macchia E, Sarcina L, Scandurra C, Torricelli F, Cioffi N, Torsi L, Bollella P. Enzyme based amperometric wide field biosensors: Is single‐molecule detection possible? ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Angelo Tricase
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Anna Imbriano
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Eleonora Macchia
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Lucia Sarcina
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione Università degli Studi di Brescia Brescia Italy
| | - Nicola Cioffi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Luisa Torsi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Paolo Bollella
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| |
Collapse
|
3
|
McKenzie ECR, Hosseini S, Petro AGC, Rudman KK, Gerroll BHR, Mubarak MS, Baker LA, Little RD. Versatile Tools for Understanding Electrosynthetic Mechanisms. Chem Rev 2021; 122:3292-3335. [PMID: 34919393 DOI: 10.1021/acs.chemrev.1c00471] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrosynthesis is a popular, green alternative to traditional organic methods. Understanding the mechanisms is not trivial yet is necessary to optimize reaction processes. To this end, a multitude of analytical tools is available to identify and quantitate reaction products and intermediates. The first portion of this review serves as a guide that underscores electrosynthesis fundamentals, including instrumentation, electrode selection, impacts of electrolyte and solvent, cell configuration, and methods of electrosynthesis. Next, the broad base of analytical techniques that aid in mechanism elucidation are covered in detail. These methods are divided into electrochemical, spectroscopic, chromatographic, microscopic, and computational. Technique selection is dependent on predicted reaction pathways and electrogenerated intermediates. Often, a combination of techniques must be utilized to ensure accuracy of the proposed model. To conclude, future prospects that aim to enhance the field are discussed.
Collapse
Affiliation(s)
- Eric C R McKenzie
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ana G Couto Petro
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kelly K Rudman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Benjamin H R Gerroll
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Lane A Baker
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - R Daniel Little
- Department of Chemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Ngom SM, Potier IL, Haghiri-Gosnet AM, Gamby J. Modeling the role played by nanoslit lengths on conductance changes into micro nano microfluidics devices. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Kang S, Nieuwenhuis AF, Mathwig K, Mampallil D, Kostiuchenko ZA, Lemay SG. Single-molecule electrochemistry in nanochannels: probing the time of first passage. Faraday Discuss 2018; 193:41-50. [PMID: 27775135 DOI: 10.1039/c6fd00075d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusive mass transport of individual redox molecules was probed experimentally in microfabricated nanogap electrodes. The residence times for molecules inside a well-defined detection volume were extracted and the resulting distribution was compared with quantitative analytical predictions from random-walk theory for the time of first passage. The results suggest that a small number of strongly adsorbing sites strongly influence mass transport at trace analyte levels.
Collapse
Affiliation(s)
- Shuo Kang
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Ab F Nieuwenhuis
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Klaus Mathwig
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Dileep Mampallil
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Zinaida A Kostiuchenko
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Serge G Lemay
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
6
|
Cui J, Mathwig K, Mampallil D, Lemay SG. Potential-Controlled Adsorption, Separation, and Detection of Redox Species in Nanofluidic Devices. Anal Chem 2018; 90:7127-7130. [PMID: 29808992 PMCID: PMC6011178 DOI: 10.1021/acs.analchem.8b01719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoscale channels and electrodes for electrochemical measurements exhibit extreme surface-to-volume ratios and a correspondingly high sensitivity to even weak degrees of surface interactions. Here, we exploit the potential-dependent reversible adsorption of outer-sphere redox species to modulate in space and time their concentration in a nanochannel under advective flow conditions. Induced concentration variations propagate downstream at a species-dependent velocity. This allows one to amperometrically distinguish between attomole amounts of species based on their time-of-flight. On-demand concentration pulse generation, separation, and detection are all integrated in a miniaturized platform.
Collapse
Affiliation(s)
- Jin Cui
- MESA+ Institute for Nanotechnology , University of Twente , PO Box 217, 7500 AE Enschede , The Netherlands
| | - Klaus Mathwig
- MESA+ Institute for Nanotechnology , University of Twente , PO Box 217, 7500 AE Enschede , The Netherlands
| | - Dileep Mampallil
- MESA+ Institute for Nanotechnology , University of Twente , PO Box 217, 7500 AE Enschede , The Netherlands
| | - Serge G Lemay
- MESA+ Institute for Nanotechnology , University of Twente , PO Box 217, 7500 AE Enschede , The Netherlands
| |
Collapse
|
7
|
Double layer effects in voltammetric measurements with scanning electrochemical microscopy (SECM). J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.10.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Kostiuchenko ZA, Glazer PJ, Mendes E, Lemay SG. Chemical physics of electroactive materials - the oft-overlooked faces of electrochemistry. Faraday Discuss 2017; 199:9-28. [PMID: 28654123 DOI: 10.1039/c7fd00117g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electroactive materials and their applications are enjoying renewed attention, in no small part motivated by the advent of nanoscale tools for their preparation and study. While the fundamentals of charge and mass transport in electrolytes on this scale are by and large well understood, their interplay can have subtle manifestations in the more complex situations typical of, for example, integrated microfluidics-based applications. In particular, the role of faradaic processes is often overlooked or, at best, purposefully suppressed via experimental design. In this introductory article we discuss, using simple illustrations from our laboratories, some of the manifestations of electrochemistry in electroactive materials.
Collapse
Affiliation(s)
- Zinaida A Kostiuchenko
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Piotr J Glazer
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Eduardo Mendes
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Serge G Lemay
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
9
|
Lu J, Zhang B. Electrostatic Ion Enrichment in an Ultrathin-Layer Cell with a Critical Dimension between 5 and 20 nm. Anal Chem 2017; 89:2739-2746. [PMID: 28194951 DOI: 10.1021/acs.analchem.6b02916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrostatic interactions play an essential role in many analytical applications including molecular sensing and transport studies using nanopores and separation of charged species. Here, we report the voltammetric quantification of electrostatic ion enrichment in a 5-20 nm thin electrochemical cell. A simple lithographic micro/nanofabrication process was used to create ultrathin-layer cells (UTLCs) with a critical dimension (i.e., cell thickness) as small as 5 nm. The voltammetric response of a UTLC was found to be largely dominated by the electrostatic interaction between charges on the cell walls and the redox species. We show that the ultrasmall cell dimension yielded a 100-300-fold enrichment for cationic redox species. An interesting surface adsorption effect was also demonstrated.
Collapse
Affiliation(s)
- Jin Lu
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| |
Collapse
|
10
|
Dual-Plate Gold-Gold Microtrench Electrodes for Generator-Collector Voltammetry without Supporting Electrolyte. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.11.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Zafarani HR, Mathwig K, Lemay SG, Sudhölter EJR, Rassaei L. Modulating Selectivity in Nanogap Sensors. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hamid Reza Zafarani
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Klaus Mathwig
- Pharmaceutical
Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands
| | - Serge G. Lemay
- MESA+
Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ernst J. R. Sudhölter
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Liza Rassaei
- Laboratory
of Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
12
|
Lu Y, Guo Z, Song JJ, Huang QA, Zhu SW, Huang XJ, Wei Y. Tunable nanogap devices for ultra-sensitive electrochemical impedance biosensing. Anal Chim Acta 2016; 905:58-65. [PMID: 26755137 DOI: 10.1016/j.aca.2015.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/29/2015] [Indexed: 11/29/2022]
Abstract
A wealth of research has been available discussing nanogap devices for detecting very small quantities of biomolecules by observing their electrical behavior generally performed in dry conditions. We report that a gold nanogapped electrode with tunable gap length for ultra-sensitive detection of streptavidin based on electrochemical impedance technique. The gold nanogap is fabricated using simple monolayer film deposition and in-situ growth of gold nanoparticles in a traditional interdigitated array (IDA) microelectrode. The electrochemical impedance biosensor with a 25-nm nanogap is found to be ultra-sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin hinder the electron transfer between two electrodes, resulting in a large increase in electron-transfer resistance (Ret) for operating the impedance. A linear relation between the relative Ret and the logarithmic value of streptavidin concentration is observed in the concentration range from 1 pM (picomolar) to 100 nM (nanomolar). The lowest detectable concentration actually measured reaches 1 pM. We believe that such an electrochemical impedance nanogap biosensor provides a useful approach towards biomolecular detection that could be extended to a number of other systems.
Collapse
Affiliation(s)
- Yong Lu
- Department of Chemistry, Wannan Medical College, Wuhu 241002, PR China
| | - Zheng Guo
- Nanomaterials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Jing-Jing Song
- Department of Chemistry, Wannan Medical College, Wuhu 241002, PR China
| | - Qin-An Huang
- Department of Chemistry, Wannan Medical College, Wuhu 241002, PR China
| | - Si-Wei Zhu
- Department of Chemistry, Wannan Medical College, Wuhu 241002, PR China
| | - Xing-Jiu Huang
- Nanomaterials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yan Wei
- Department of Chemistry, Wannan Medical College, Wuhu 241002, PR China.
| |
Collapse
|
13
|
Oldham KB, Marken F, Myland JC. Theory of unsupported, steady-state, Nernstian, three-ion, twin-electrode, voltammetry: the special case of dual concentration polarization. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-015-3113-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Zafarani HR, Mathwig K, Sudhölter EJ, Rassaei L. Electrochemical redox cycling in a new nanogap sensor: Design and simulation. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.11.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Lewis GEM, Gross AJ, Kasprzyk-Hordern B, Lubben AT, Marken F. Feedback-amplified electrochemical dual-plate boron-doped diamond microtrench detector for flow injection analysis. Electrophoresis 2015; 36:1866-71. [PMID: 25735831 PMCID: PMC4687414 DOI: 10.1002/elps.201500017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 11/19/2022]
Abstract
An electrochemical flow cell with a boron‐doped diamond dual‐plate microtrench electrode has been developed and demonstrated for hydroquinone flow injection electroanalysis in phosphate buffer pH 7. Using the electrochemical generator‐collector feedback detector improves the sensitivity by one order of magnitude (when compared to a single working electrode detector). The diffusion process is switched from an analyte consuming “external” process to an analyte regenerating “internal” process with benefits in selectivity and sensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Frank Marken
- Department of Chemistry, University of Bath, Bath, UK
| |
Collapse
|
16
|
Rassaei L, Mathwig K, Kang S, Heering HA, Lemay SG. Integrated biodetection in a nanofluidic device. ACS NANO 2014; 8:8278-84. [PMID: 25105352 DOI: 10.1021/nn502678t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The sensing of enzymatic processes in volumes at or below the scale of single cells is challenging but highly desirable in the study of biochemical processes. Here we demonstrate a nanofluidic device that combines an enzymatic recognition element and electrochemical signal transduction within a six-femtoliter volume. Our approach is based on localized immobilization of the enzyme tyrosinase in a microfabricated nanogap electrochemical transducer. The enzymatic reaction product quinone is localized in the confined space of a nanochannel in which efficient redox cycling also takes place. Thus, the sensor allows the sensitive detection of minute amounts of product molecules generated by the enzyme in real time. This method is ideally suited for the study of ultra-small-volume systems such as the contents of individual biological cells or organelles.
Collapse
|
17
|
Hammond JL, Gross AJ, Estrela P, Iniesta J, Green SJ, Winlove CP, Winyard PG, Benjamin N, Marken F. Cysteine-Cystine Redox Cycling in a Gold–Gold Dual-Plate Generator-Collector Microtrench Sensor. Anal Chem 2014; 86:6748-52. [DOI: 10.1021/ac501321e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jules L. Hammond
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Andrew J. Gross
- Department
of Chemistry, University of Bath, Bath BA2 7AY U.K
| | - Pedro Estrela
- Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Jesus Iniesta
- Universidad Alicante, Department of Physical Chemistry
and Institute for Electrochemistry, 03080 Alicante, Spain
| | - Stephen J. Green
- Department
of Physics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4
4QL, U.K
| | - C. Peter Winlove
- Department
of Physics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4
4QL, U.K
| | - Paul G. Winyard
- University of Exeter Medical School, University of Exeter, St. Luke’s Campus, Exeter, EX1
2LU, U.K
| | - Nigel Benjamin
- University of Exeter Medical School, University of Exeter, St. Luke’s Campus, Exeter, EX1
2LU, U.K
| | - Frank Marken
- Department
of Chemistry, University of Bath, Bath BA2 7AY U.K
| |
Collapse
|
18
|
Mathwig K, Aartsma TJ, Canters GW, Lemay SG. Nanoscale methods for single-molecule electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:383-404. [PMID: 25000819 DOI: 10.1146/annurev-anchem-062012-092557] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development of experiments capable of probing individual molecules has led to major breakthroughs in fields ranging from molecular electronics to biophysics, allowing direct tests of knowledge derived from macroscopic measurements and enabling new assays that probe population heterogeneities and internal molecular dynamics. Although still somewhat in their infancy, such methods are also being developed for probing molecular systems in solution using electrochemical transduction mechanisms. Here we outline the present status of this emerging field, concentrating in particular on optical methods, metal-molecule-metal junctions, and electrochemical nanofluidic devices.
Collapse
Affiliation(s)
- Klaus Mathwig
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands; ,
| | | | | | | |
Collapse
|
19
|
Kang S, Nieuwenhuis AF, Mathwig K, Mampallil D, Lemay SG. Electrochemical single-molecule detection in aqueous solution using self-aligned nanogap transducers. ACS NANO 2013; 7:10931-10937. [PMID: 24279688 DOI: 10.1021/nn404440v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electrochemical detection of individual molecular tags in nanochannels may enable cost-effective, massively parallel analysis and diagnostics platforms. Here we demonstrate single-molecule detection of prototypical analytes in aqueous solution based on redox cycling in 40 nm nanogap transducers. These nanofluidic devices are fabricated using standard microfabrication techniques combined with a self-aligned approach that minimizes gap size and dead volume. We demonstrate the detection of three common redox mediators at physiological salt concentrations.
Collapse
Affiliation(s)
- Shuo Kang
- MESA+ Institute for Nanotechnology, University of Twente , PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|