1
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
2
|
Colin C, Levallois P, Botsos-Margerit U, Clément F, Zigah D, Arbault S. Easy cleaning plus stable activation of glassy carbon electrode surface by oxygen plasma. Bioelectrochemistry 2023; 154:108551. [PMID: 37677984 DOI: 10.1016/j.bioelechem.2023.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Glassy carbon (GC) electrodes are widely used in electroanalytical applications especially in bioelectrochemistry. Their use starts with an efficient surface cleaning and activation protocol, mostly based on surface polishing steps. We studied the use of an oxygen plasma exposure of GC electrodes to replace common polishing procedures. The cyclic voltammetry (CV) responses of ferrocyanide and ferrocene-dimethanol were used to compare brand new, surface-polished and plasma-treated GC electrodes. Plasma treatment induces CV responses with improved features, close to theoretical values, as compared to other methods. The plasma effects were quasi-stable over a week when electrodes were stored in water, this being explained by increased surface energy and hydrophilicity. Furthermore, when electroreduction of diazonium was performed on GC electrodes, the surface blockade could be removed by the plasma. Thus, a short oxygen plasma treatment is prone to replace polishing protocols, that display person-dependent efficiency, in most of the experiments with GC electrodes.
Collapse
Affiliation(s)
- Camille Colin
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33400 Talence, France
| | - Pierre Levallois
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33400 Talence, France
| | | | - Franck Clément
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, 64600 Anglet, France
| | - Dodzi Zigah
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33400 Talence, France; Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, F-86073 Poitiers, France.
| | - Stéphane Arbault
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33400 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| |
Collapse
|
3
|
Zhang X, Joyce GH, Leu AO, Zhao J, Rabiee H, Virdis B, Tyson GW, Yuan Z, McIlroy SJ, Hu S. Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph 'Candidatus Methanoperedens nitroreducens'. Nat Commun 2023; 14:6118. [PMID: 37777538 PMCID: PMC10542353 DOI: 10.1038/s41467-023-41847-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Anaerobic methanotrophic archaea (ANME) carry out anaerobic oxidation of methane, thus playing a crucial role in the methane cycle. Previous genomic evidence indicates that multi-heme c-type cytochromes (MHCs) may facilitate the extracellular electron transfer (EET) from ANME to different electron sinks. Here, we provide experimental evidence supporting cytochrome-mediated EET for the reduction of metals and electrodes by 'Candidatus Methanoperedens nitroreducens', an ANME acclimated to nitrate reduction. Ferrous iron-targeted fluorescent assays, metatranscriptomics, and single-cell imaging suggest that 'Ca. M. nitroreducens' uses surface-localized redox-active cytochromes for metal reduction. Electrochemical and Raman spectroscopic analyses also support the involvement of c-type cytochrome-mediated EET for electrode reduction. Furthermore, several genes encoding menaquinone cytochrome type-c oxidoreductases and extracellular MHCs are differentially expressed when different electron acceptors are used.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Georgina H Joyce
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Andy O Leu
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), Faculty of Engineering, Architecture and Information Technology, University of Queensland, Brisbane, Australia.
| |
Collapse
|
4
|
Yanuka-Golub K, Dubinsky V, Korenblum E, Reshef L, Ofek-Lalzar M, Rishpon J, Gophna U. Anode Surface Bioaugmentation Enhances Deterministic Biofilm Assembly in Microbial Fuel Cells. mBio 2021; 12:e03629-20. [PMID: 33653887 PMCID: PMC8092319 DOI: 10.1128/mbio.03629-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022] Open
Abstract
Microbial fuel cells (MFCs) generate energy while aiding the biodegradation of waste through the activity of an electroactive mixed biofilm. Metabolic cooperation is essential for MFCs' efficiency, especially during early colonization. Thus, examining specific ecological processes that drive the assembly of anode biofilms is highly important for shortening startup times and improving MFC performance, making this technology cost-effective and sustainable. Here, we use metagenomics to show that bioaugmentation of the anode surface with a taxonomically defined electroactive consortium, dominated by Desulfuromonas, resulted in an extremely rapid current density generation. Conversely, the untreated anode surface resulted in a highly stochastic and slower biofilm assembly. Remarkably, an efficient anode colonization process was obtained only if wastewater was added, leading to a nearly complete replacement of the bioaugmented community by Geobacter lovleyi Although different approaches to improve MFC startup have been investigated, we propose that only the combination of anode bioaugmentation with wastewater inoculation can reduce stochasticity. Such an approach provides the conditions that support the growth of specific newly arriving species that positively support the fast establishment of a highly functional anode biofilm.IMPORTANCE Mixed microbial communities play important roles in treating wastewater, in producing renewable energy, and in the bioremediation of pollutants in contaminated environments. While these processes are well known, especially the community structure and biodiversity, how to efficiently and robustly manage microbial community assembly remains unknown. Moreover, it has been shown that a high degree of temporal variation in microbial community composition and structure often occurs even under identical environmental conditions. This heterogeneity is directly related to stochastic processes involved in microbial community organization, similarly during the initial stages of biofilm formation on surfaces. In this study, we show that anode surface pretreatment alone is not sufficient for a substantial improvement in startup times in microbial fuel cells (MFCs), as previously thought. Rather, we have discovered that the combination of applying a well-known consortium directly on the anode surface together with wastewater (including the bacteria that they contain) is the optimized management scheme. This allowed a selected colonization process by the wastewater species, which improved the functionality relative to that of untreated systems.
Collapse
Affiliation(s)
- Keren Yanuka-Golub
- The Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vadim Dubinsky
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elisa Korenblum
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Leah Reshef
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Judith Rishpon
- The Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- The Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Generation of a Highly Efficient Electrode for Ethanol Oxidation by Simply Electrodepositing Palladium on the Oxygen Plasma-Treated Carbon Fiber Paper. Catalysts 2021. [DOI: 10.3390/catal11020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, a highly efficient carbon-supported Pd catalyst for the direct ethanol fuel cell was developed by electrodepositing nanostructured Pd on oxygen plasma-treated carbon fiber paper (Pd/pCFP). The oxygen plasma treatment has been shown to effectively remove the surface organic contaminants and add oxygen species onto the CFP to facilitate the deposition of nano-structured Pd on the surface of carbon fibers. Under the optimized and controllable electrodeposition method, nanostructured Pd of ~10 nm can be easily and evenly deposited onto the CFP. The prepared Pd/pCFP electrode exhibited an extraordinarily high electrocatalytic activity towards ethanol oxidation, with a current density of 222.8 mA mg−1 Pd. Interestingly, the electrode also exhibited a high tolerance to poisoning species and long-term stability, with a high ratio of the forward anodic peak current density to the backward anodic peak current density. These results suggest that the Pd/pCFP catalyst may be a promising anodic material for the development of highly efficient direct alcohol fuel cells.
Collapse
|
6
|
Anode surface modification regulates biofilm community population and the performance of micro-MFC based biochemical oxygen demand sensor. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, Qiu J, Guan X, Huang T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front Microbiol 2020; 11:928. [PMID: 32508772 PMCID: PMC7253578 DOI: 10.3389/fmicb.2020.00928] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are complex surface attached communities of bacteria held together by self-produced polymer matrixs mainly composed of polysaccharides, secreted proteins, and extracellular DNAs. Bacterial biofilm formation is a complex process and can be described in five main phases: (i) reversible attachment phase, where bacteria non-specifically attach to surfaces; (ii) irreversible attachment phase, which involves interaction between bacterial cells and a surface using bacterial adhesins such as fimbriae and lipopolysaccharide (LPS); (iii) production of extracellular polymeric substances (EPS) by the resident bacterial cells; (iv) biofilm maturation phase, in which bacterial cells synthesize and release signaling molecules to sense the presence of each other, conducing to the formation of microcolony and maturation of biofilms; and (v) dispersal/detachment phase, where the bacterial cells depart biofilms and comeback to independent planktonic lifestyle. Biofilm formation is detrimental in healthcare, drinking water distribution systems, food, and marine industries, etc. As a result, current studies have been focused toward control and prevention of biofilms. In an effort to get rid of harmful biofilms, various techniques and approaches have been employed that interfere with bacterial attachment, bacterial communication systems (quorum sensing, QS), and biofilm matrixs. Biofilms, however, also offer beneficial roles in a variety of fields including applications in plant protection, bioremediation, wastewater treatment, and corrosion inhibition amongst others. Development of beneficial biofilms can be promoted through manipulation of adhesion surfaces, QS and environmental conditions. This review describes the events involved in bacterial biofilm formation, lists the negative and positive aspects associated with bacterial biofilms, elaborates the main strategies currently used to regulate establishment of harmful bacterial biofilms as well as certain strategies employed to encourage formation of beneficial bacterial biofilms, and highlights the future perspectives of bacterial biofilms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences & College of Plant Protection & International College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Flexer V, Jourdin L. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide. Acc Chem Res 2020; 53:311-321. [PMID: 31990521 DOI: 10.1021/acs.accounts.9b00523] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbon-based products are crucial to our society, but their production from fossil-based carbon is unsustainable. Production pathways based on the reuse of CO2 will achieve ultimate sustainability. Furthermore, the costs of renewable electricity production are decreasing at such a high rate, that electricity is expected to be the main energy carrier from 2040 onward. Electricity-driven novel processes that convert CO2 into chemicals need to be further developed. Microbial electrosynthesis is a biocathode-driven process in which electroactive microorganisms derive electrons from solid-state electrodes to catalyze the reduction of CO2 or organics and generate valuable extracellular multicarbon reduced products. Microorganisms can be tuned to high-rate and selective product formation. Optimization and upscaling of microbial electrosynthesis to practical, real life applications is dependent upon performance improvement while maintaining low cost. Extensive biofilm development, enhanced electron transfer rate from solid-state electrodes to microorganisms and increased chemical production rate require optimized microbial consortia, efficient reactor designs, and improved cathode materials. This Account is about the development of different electrode materials purposely designed for improved microbial electrosynthesis: NanoWeb-RVC and EPD-3D. Both types of electrodes are biocompatible, highly conductive three-dimensional hierarchical porous structures. Both chemical vapor deposition (CVD) and electrophoretic deposition were used to grow homogeneous and uniform carbon nanotube layers on the honeycomb structure of reticulated vitreous carbon. The high surface area to volume ratio of these electrodes maximizes the available surface area for biofilm development, i.e., enabling an increased catalyst loading. Simultaneously, the nanostructure makes it possible for a continuous electroactive biofilm to be formed, with increased electron transfer rate and high Coulombic efficiencies. Fully autotrophic biofilms from mixed cultures developed on both types of electrodes rely on CO2 as the sole carbon source and the solid-state electrode as the unique energy supply. We present first the synthesis and characteristics of the bare electrodes. We then report the outstanding performance indicators of these novel biocathodes: current densities up to -200 A m-2 and acetate production rates up to 1330 g m-2 day-1, with electron and CO2 recoveries into acetate being very close to 100% for mature biofilms. The performance indicators are still among the highest reported by either purposely designed or commercially available biocathodes. Finally, we made use of the titration and off-gas analysis sensor (TOGA) to elucidate the electron transfer mechanism in these efficient biocathodes. Planktonic cells in the catholyte were found irrelevant for acetate production. We identified the electron transfer to be mediated by biologically induced H2. H2 is not detected in the headspace of the reactors, unless CO2 feeding is interrupted or the cathodes sterilized. Thus, the biofilm is extremely efficient in consuming the generated H2. Finally, we successfully demonstrated the use of a synthetic biogas mixture as a CO2 source. We thus proved the potential of microbial electrosynthesis for the simultaneous upgrading of biogas, while fixating CO2 via the production of acetate.
Collapse
Affiliation(s)
- Victoria Flexer
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Av. Martijena S/N, Palpalá 4612, Argentina
| | - Ludovic Jourdin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
9
|
Tite T, Chiticaru EA, Burns JS, Ioniţă M. Impact of nano-morphology, lattice defects and conductivity on the performance of graphene based electrochemical biosensors. J Nanobiotechnology 2019; 17:101. [PMID: 31581949 PMCID: PMC6777027 DOI: 10.1186/s12951-019-0535-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Diverse properties of graphenic materials have been extensively explored to determine properties that make good electrochemical nanomaterial-based biosensors. These are reviewed by critically examining the influence of graphene nano-morphology, lattice defects and conductivity. Stability, reproducibility and fabrication are discussed together with sensitivity and selectivity. We provide an outlook on future directions for building efficient electrochemical biosensors.
Collapse
Affiliation(s)
- Teddy Tite
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Elena Alina Chiticaru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Jorge S. Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ioniţă
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
10
|
Li C, Cheng S. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system. Crit Rev Biotechnol 2019; 39:1015-1030. [PMID: 31496297 DOI: 10.1080/07388551.2019.1662367] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Various new energy technologies have been developed to reduce reliance on fossil fuels. The bioelectrochemical system (BES), an integrated microbial-electrochemical energy conversion process, is projected to be a sustainable and environmentally friendly energy technology. However, low power density is still one of the main limiting factors restricting the practical application of BESs. To enhance power output, functional group modification on anode surfaces has been primarily developed to improve the bioelectrochemical performances of BESs in terms of startup, power density, chemical oxygen demand (COD) removal and coulombic efficiency (CE). This modification could change the anode surface characteristics: roughness, hydrophobicity, biocompatibility, chemical bonding and electrochemically active surface area. This will facilitate bacterial adhesion, biofilm formation and extracellular electron transfer (EET). Additionally, some antibacterial functional groups are applied on air cathodes in order to suppress aerobic biofilms and enhance cathodic oxygen reduction reactions (ORRs). Various modification strategies such as: soaking, heat treatment and plasma modification have been reported to introduce functional groups typically as O-, N- and S-containing groups. In this review, the effects of anode functional groups on electroactive bacteria through the whole biofilm formation process are summarized. In addition, the application of those modification technologies to improve bioelectricity generation, resource recovery, bioelectrochemical analysis and the production of value-added chemicals and biofuels is also discussed. Accordingly, this review aims to help scientists select the most appropriate functional groups and up-to-date methods to improve biofilm formation.
Collapse
Affiliation(s)
- Chaochao Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University , Hangzhou , China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University , Hangzhou , China
| |
Collapse
|
11
|
Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Maurice Mbadinga S, Yang SZ, Liu JF, Sand W, Gu JD, Mu BZ. Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials. BIORESOURCE TECHNOLOGY 2019; 288:121401. [PMID: 31151767 DOI: 10.1016/j.biortech.2019.121401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Carbon dioxide storage in petroleum and other geological reservoirs is an economical option for long-term separation of this gas from the atmosphere. Other options include applications through conversion to valuable chemicals. Microalgae and plants perform direct fixation of carbon dioxide to biomass, which is then used as raw material for further microbial transformation (MT). The approach by microbial transformation can achieve reduction of carbon dioxide and production of biofuels. This review addresses the research and technological processes related to direct MT of carbon dioxide, factors affecting their efficiency in operation and the review of economic feasibility. Additionally, some commercial plants making utilization of CO2 around the globe are also summarized along with different value-added chemicals (methane, acetate, fatty acids and alcohols) as reported in literature. Further information is also provided for a better understanding of direct CO2 MT and its future prospects leading to a sustainable and clean environment.
Collapse
Affiliation(s)
- Muhammad Irfan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Yang Bai
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mohsin Kazmi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Shan Yuan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Serge Maurice Mbadinga
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Ji-Dong Gu
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center of MEOR, East China University of Science and Technology, Ministry of Education, Shanghai 200237, China.
| |
Collapse
|
12
|
Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up. Enzyme Microb Technol 2017; 96:1-13. [DOI: 10.1016/j.enzmictec.2016.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
|
13
|
Cheng S, Liu W, Sun D, Huang H. Enhanced power production of microbial fuel cells by reducing the oxygen and nitrogen functional groups of carbon cloth anode. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering; Zhejiang University; Hangzhou 310027 China
| | - Weifeng Liu
- State Key Laboratory of Clean Energy, Department of Energy Engineering; Zhejiang University; Hangzhou 310027 China
| | - Dan Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering; Zhejiang University; Hangzhou 310027 China
| | - Haobin Huang
- State Key Laboratory of Clean Energy, Department of Energy Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
14
|
Pozo G, Jourdin L, Lu Y, Keller J, Ledezma P, Freguia S. Cathodic biofilm activates electrode surface and achieves efficient autotrophic sulfate reduction. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Modifying membrane anode in a microbial fuel cell to improve removal of gaseous ethyl acetate without reducing generation of electricity. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Jourdin L, Freguia S, Flexer V, Keller J. Bringing High-Rate, CO2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1982-9. [PMID: 26810392 DOI: 10.1021/acs.est.5b04431] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The enhancement of microbial electrosynthesis (MES) of acetate from CO2 to performance levels that could potentially support practical implementations of the technology must go through the optimization of key design and operating conditions. We report that higher proton availability drastically increases the acetate production rate, with pH 5.2 found to be optimal, which will likely suppress methanogenic activity without inhibitor addition. Applied cathode potential as low as -1.1 V versus SHE still achieved 99% of electron recovery in the form of acetate at a current density of around -200 A m(-2). These current densities are leading to an exceptional acetate production rate of up to 1330 g m(-2) day(-1) at pH 6.7. Using highly open macroporous reticulated vitreous carbon electrodes with macropore sizes of about 0.6 mm in diameter was found to be optimal for achieving a good balance between total surface area available for biofilm formation and effective mass transfer between the bulk liquid and the electrode and biofilm surface. Furthermore, we also successfully demonstrated the use of a synthetic biogas mixture as carbon dioxide source, yielding similarly high MES performance as pure CO2. This would allow this process to be used effectively for both biogas quality improvement and conversion of the available CO2 to acetate.
Collapse
Affiliation(s)
- Ludovic Jourdin
- Advanced Water Management Centre and ‡Centre for Microbial Electrochemical Systems, The University of Queensland , Gehrmann Building, Brisbane, QLD 4072, Australia
| | - Stefano Freguia
- Advanced Water Management Centre and ‡Centre for Microbial Electrochemical Systems, The University of Queensland , Gehrmann Building, Brisbane, QLD 4072, Australia
| | - Victoria Flexer
- Advanced Water Management Centre and ‡Centre for Microbial Electrochemical Systems, The University of Queensland , Gehrmann Building, Brisbane, QLD 4072, Australia
| | - Jurg Keller
- Advanced Water Management Centre and ‡Centre for Microbial Electrochemical Systems, The University of Queensland , Gehrmann Building, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Vogl A, Bischof F, Wichern M. Surface-to-surface biofilm transfer: a quick and reliable startup strategy for mixed culture microbial fuel cells. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:1769-1776. [PMID: 27120629 DOI: 10.2166/wst.2016.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The startup of microbial fuel cells (MFCs) is known to be prone to failure or result in erratic performance impeding the research. The aim of this study was to advise a quick launch strategy for laboratory-scale MFCs that ensures steady operation performance in a short period of time. Different startup strategies were investigated and compared with membraneless single chamber MFCs. A direct surface-to-surface biofilm transfer (BFT) in an operating MFC proved to be the most efficient method. It provided steady power densities of 163 ± 13 mWm(-2) 4 days after inoculation compared to 58 ± 15 mWm(-2) after 30 days following a conventional inoculation approach. The in situ BFT eliminates the need for microbial acclimation during startup and reduces performance fluctuations caused by shifts in microbial biodiversity. Anaerobic pretreatment of the substrate and addition of suspended enzymes from an operating MFC into the new MFC proved to have a beneficial effect on startup and subsequent operation. Polarization methods were applied to characterize the startup phase and the steady state operation in terms of power densities, internal resistance and power overshoot during biofilm maturation. Applying this method a well-working MFC can be multiplied into an array of identically performing MFCs.
Collapse
Affiliation(s)
- Andreas Vogl
- Department of Mechanical and Environmental Engineering, Technical University of East Bavaria Amberg-Weiden, Kaiser-Wilhelm-Ring 23, 92224 Amberg, Germany E-mail: ; Institute of Urban Water Management and Environmental Engineering, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Franz Bischof
- Department of Mechanical and Environmental Engineering, Technical University of East Bavaria Amberg-Weiden, Kaiser-Wilhelm-Ring 23, 92224 Amberg, Germany E-mail:
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
18
|
Virdis B, Millo D, Donose BC, Lu Y, Batstone DJ, Krömer JO. Analysis of electron transfer dynamics in mixed community electroactive microbial biofilms. RSC Adv 2016. [DOI: 10.1039/c5ra15676a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemically active microbial biofilms are capable to produce electric current when grown onto electrodes. This work investigates the dynamics of electron transfer inside the biofilm as well as at the biofilm/electrode interface.
Collapse
Affiliation(s)
- Bernardino Virdis
- The University of Queensland
- Centre for Microbial Electrochemical Systems (CEMES)
- Brisbane
- Australia
- The University of Queensland
| | - Diego Millo
- Biomolecular Spectroscopy/LaserLaB Amsterdam
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- The Netherlands
| | - Bogdan C. Donose
- The University of Queensland
- Centre for Microbial Electrochemical Systems (CEMES)
- Brisbane
- Australia
- The University of Queensland
| | - Yang Lu
- The University of Queensland
- Advanced Water Management Centre (AWMC)
- Brisbane
- Australia
| | - Damien J. Batstone
- The University of Queensland
- Advanced Water Management Centre (AWMC)
- Brisbane
- Australia
| | - Jens O. Krömer
- The University of Queensland
- Centre for Microbial Electrochemical Systems (CEMES)
- Brisbane
- Australia
- The University of Queensland
| |
Collapse
|
19
|
Epifanio M, Inguva S, Kitching M, Mosnier JP, Marsili E. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells. Bioelectrochemistry 2015; 106:186-93. [DOI: 10.1016/j.bioelechem.2015.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
|
20
|
Jourdin L, Grieger T, Monetti J, Flexer V, Freguia S, Lu Y, Chen J, Romano M, Wallace GG, Keller J. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13566-13574. [PMID: 26484732 DOI: 10.1021/acs.est.5b03821] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.
Collapse
Affiliation(s)
- Ludovic Jourdin
- Advanced Water Management Centre, The University of Queensland , Level 4, Gehrmann Building (60), Brisbane, Queensland 4072, Australia
- Centre for Microbial Electrosynthesis, The University of Queensland , Level 4, Gehrmann Building (60), Brisbane, Queensland 4072, Australia
| | - Timothy Grieger
- Advanced Water Management Centre, The University of Queensland , Level 4, Gehrmann Building (60), Brisbane, Queensland 4072, Australia
| | - Juliette Monetti
- Advanced Water Management Centre, The University of Queensland , Level 4, Gehrmann Building (60), Brisbane, Queensland 4072, Australia
| | - Victoria Flexer
- Advanced Water Management Centre, The University of Queensland , Level 4, Gehrmann Building (60), Brisbane, Queensland 4072, Australia
| | - Stefano Freguia
- Advanced Water Management Centre, The University of Queensland , Level 4, Gehrmann Building (60), Brisbane, Queensland 4072, Australia
- Centre for Microbial Electrosynthesis, The University of Queensland , Level 4, Gehrmann Building (60), Brisbane, Queensland 4072, Australia
| | - Yang Lu
- Advanced Water Management Centre, The University of Queensland , Level 4, Gehrmann Building (60), Brisbane, Queensland 4072, Australia
| | - Jun Chen
- RC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2522, Australia
| | - Mark Romano
- RC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- RC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong , Wollongong, NSW 2522, Australia
| | - Jurg Keller
- Advanced Water Management Centre, The University of Queensland , Level 4, Gehrmann Building (60), Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Guo K, Prévoteau A, Patil SA, Rabaey K. Engineering electrodes for microbial electrocatalysis. Curr Opin Biotechnol 2015; 33:149-56. [DOI: 10.1016/j.copbio.2015.02.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/21/2023]
|
22
|
Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source. Bioelectrochemistry 2015; 102:56-63. [DOI: 10.1016/j.bioelechem.2014.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
|
23
|
Sarjit A, Mei Tan S, A. Dykes G. Surface modification of materials to encourage beneficial biofilm formation. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.4.404] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Pozo G, Jourdin L, Lu Y, Ledezma P, Keller J, Freguia S. Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction. RSC Adv 2015. [DOI: 10.1039/c5ra18444d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The autotrophic reduction of sulfate can be sustained with a cathode as the only electron donor in bioelectrochemical systems (BES).
Collapse
Affiliation(s)
- Guillermo Pozo
- Advanced Water Management Centre
- The University of Queensland
- Australia
| | - Ludovic Jourdin
- Advanced Water Management Centre
- The University of Queensland
- Australia
- Centre for Microbial Electrochemical Systems
- The University of Queensland
| | - Yang Lu
- Advanced Water Management Centre
- The University of Queensland
- Australia
| | - Pablo Ledezma
- Advanced Water Management Centre
- The University of Queensland
- Australia
| | - Jurg Keller
- Advanced Water Management Centre
- The University of Queensland
- Australia
| | - Stefano Freguia
- Advanced Water Management Centre
- The University of Queensland
- Australia
- Centre for Microbial Electrochemical Systems
- The University of Queensland
| |
Collapse
|
25
|
Guo K, Soeriyadi AH, Patil SA, Prévoteau A, Freguia S, Gooding JJ, Rabaey K. Surfactant treatment of carbon felt enhances anodic microbial electrocatalysis in bioelectrochemical systems. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2013.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|