1
|
Kottaichamy AR, Nazrulla MA, Parmar M, Thimmappa R, Devendrachari MC, Vinod CP, Volokh M, Kotresh HMN, Shalom M, Thotiyl MO. Ligand Isomerization Driven Electrocatalytic Switching. Angew Chem Int Ed Engl 2024; 63:e202405664. [PMID: 38695160 DOI: 10.1002/anie.202405664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 06/21/2024]
Abstract
The prevailing view about molecular catalysts is that the central metal ion is responsible for the reaction mechanism and selectivity, whereas the ligands mainly affect the reaction kinetics. Here, we question this paradigm and show that ligands have a dramatic influence on the selectivity of the product. We show how even a seemingly small change in ligand isomerization sharply alters the selectivity of the well-researched oxygen reduction reaction (ORR) Co phthalocyanine catalyst from an indirect 2e- to a direct 4e- pathway. Detailed analysis reveals that intramolecular hydrogen-bond interactions in the ligand activate the catalytic Co, directing the oxygen binding and thus deciding the final product. The resulting catalyst is the first example of a Co-based molecular catalyst catalyzing a direct 4e- ORR via ligand isomerization, for which it shows an activity close to the benchmark Pt in an actual H2-O2 fuel cell. The effect of the ligand isomerism is demonstrated with different central metal ions, thus highlighting the generalizability of the findings and their potential to open new possibilities in the design of molecular catalysts.
Collapse
Affiliation(s)
- Alagar Raja Kottaichamy
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | | | - Muskan Parmar
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Ravikumar Thimmappa
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | | | | | - Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | | | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Musthafa Ottakam Thotiyl
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
2
|
Siddiqui AR, N'Diaye J, Santiago-Carboney A, Martin K, Bhargava R, Rodríguez-López J. Spectroelectrochemical determination of thiolate self-assembled monolayer adsorptive stability in aqueous and non-aqueous electrolytes. Analyst 2024; 149:2842-2854. [PMID: 38600773 DOI: 10.1039/d4an00241e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Self-assembled monolayers (SAM) are ubiquitous in studies of modified electrodes for sensing, electrocatalysis, and environmental and energy applications. However, determining their adsorptive stability is crucial to ensure robust experiments. In this work, the stable potential window (SPW) in which a SAM-covered electrode can function without inducing SAM desorption was determined for aromatic SAMs on gold electrodes in aqueous and non-aqueous solvents. The SPWs were determined by employing cyclic voltammetry, attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and surface plasmon resonance (SPR). The electrochemical and spectroscopic findings concluded that all the aromatic SAMs used displayed similar trends and SPWs. In aqueous systems, the SPW lies between the reductive desorption and oxidative desorption, with pH being the decisive factor affecting the range of the SPW, with the widest SPW observed at pH 1. In the non-aqueous electrolytes, the desorption of SAMs was observed to be slow and progressive. The polarity of the solvent was the main factor in determining the SPW. The lower the polarity of the solvent, the larger the SPW, with 1-butanol displaying the widest SPW. This work showcases the power of spectroelectrochemical analysis and provides ample future directions for the use of non-polar solvents to increase SAM stability in electrochemical applications.
Collapse
Affiliation(s)
- Abdur-Rahman Siddiqui
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Jeanne N'Diaye
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | - Kristin Martin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Rohit Bhargava
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Department of Bioengineering and Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
3
|
Sulfite food additive electrochemical determination by nucleophilic addition on poly(4-aminodiphenylamine)-4-aminothiophenol-Au composite electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Attatsi IK, Jiang H, Niu Y, Xu H, Zhu W, Liang X. Monolayer cobalt(II)phthalocyanine functionalized gold electrode for enhanced electrocatalyzed oxygen reductions. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2034149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Isaac K. Attatsi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hao Jiang
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yingjie Niu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
5
|
Tuning the Covering on Gold Surfaces by Grafting Amino-Aryl Films Functionalized with Fe(II) Phthalocyanine: Performance on the Electrocatalysis of Oxygen Reduction. Molecules 2021; 26:molecules26061631. [PMID: 33804112 PMCID: PMC7998582 DOI: 10.3390/molecules26061631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022] Open
Abstract
Current selective modification methods, coupled with functionalization through organic or inorganic molecules, are crucial for designing and constructing custom-made molecular materials that act as electroactive interfaces. A versatile method for derivatizing surfaces is through an aryl diazonium salt reduction reaction (DSRR). A prominent feature of this strategy is that it can be carried out on various materials. Using the DSRR, we modified gold surface electrodes with 4-aminebenzene from 4-nitrobenzenediazonium tetrafluoroborate (NBTF), regulating the deposited mass of the aryl film to achieve covering control on the electrode surface. We got different degrees of covering: monolayer, intermediate, and multilayer. Afterwards, the ArNO2 end groups were electrochemically reduced to ArNH2 and functionalized with Fe(II)-Phthalocyanine to study the catalytic performance for the oxygen reduction reaction (ORR). The thickness of the electrode covering determines its response in front of ORR. Interestingly, the experimental results showed that an intermediate covering film presents a better electrocatalytic response for ORR, driving the reaction by a four-electron pathway.
Collapse
|
6
|
Darkwah WK, Sandrine MKC, Adormaa BB, Teye GK, Puplampu JB. Solar light harvest: modified d-block metals in photocatalysis. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02435b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With solar light, modified d-block metal photocatalysts are useful in areas where electricity is insufficient, with its chemical stability during the photocatalytic process, and its low-cost and nontoxicity.
Collapse
Affiliation(s)
- Williams Kweku Darkwah
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Environmental Engineering Department
- College of Environment
- Hohai University
| | - Masso Kody Christelle Sandrine
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Environmental Engineering Department
- College of Environment
- Hohai University
| | - Buanya Beryl Adormaa
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Environmental Engineering Department
- College of Environment
- Hohai University
| | - Godfred Kwesi Teye
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- Environmental Engineering Department
- College of Environment
- Hohai University
| | - Joshua Buer Puplampu
- Department of Biochemistry
- School of Biological Sciences
- University of Cape Coast
- Cape Coast
- Ghana
| |
Collapse
|
7
|
Gutiérrez-Ceron C, Oñate R, Zagal JH, Pizarro A, Silva JF, Castro-Castillo C, Rezende MC, Flores M, Cortés-Arriagada D, Toro-Labbé A, Campos LM, Venkataraman L, Ponce I. Molecular conductance versus inductive effects of axial ligands on the electrocatalytic activity of self-assembled iron phthalocyanines: The oxygen reduction reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhou Y, Xing YF, Wen J, Ma HB, Wang FB, Xia XH. Axial ligands tailoring the ORR activity of cobalt porphyrin. Sci Bull (Beijing) 2019; 64:1158-1166. [PMID: 36659687 DOI: 10.1016/j.scib.2019.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023]
Abstract
In an effort to provide visualization and understanding to the electronic "push effect" of axial ligands on the catalytic activity of cobalt macrocyclic molecules, we design a simple model system involving an [5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin]cobalt(II) (TMMPCo) monolayer axially-coordinated on thiol ligand modified Au electrode and explore the activity of the axial-ligand coordinated TMPPCo toward oxygen reduction reaction (ORR) in acidic medium. Three different ligands, with a decreasing order of coordinating ability as: 4-mercaptopyridine (MPy) > 4-aminothiolphenol (APT) > 4-mercaptobenzonitrile (MBN) are used and a maximum difference in ORR onset potential of 80 mV is observed between the MPy (highest onset potential) and MBN systems (lowest onset potential). The ORR activity of TMPPCo increases with the increase in binding strength of the axial ligand. A detailed mechanism study reveals that ORR on the three ligand coordinated TMPPCo systems shares the same 2-electron mechanism with H2O2 as the terminal product. Theoretical calculation into the structure of the ligand coordinated cobalt porphyrins uncovers the variation in atomic charge of the Co(II) center and altered frontier molecular orbital distribution among the three ligand systems. Both properties have great influence on the back-bonding formation between the Co(II) center and O2 molecules, which has been suggested to be critical toward the O2 adsorption and subsequent activation process.
Collapse
Affiliation(s)
- Yue Zhou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yong-Fang Xing
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Bo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Feng-Bin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Castro-Latorre P, Miranda-Rojas S, Barrientos L, Mendizabal F. Catalytic activity of iron phthalocyanine for the oxidation of thiocyanate and L-cysteine anchored on Au(111) clusters. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1654607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pablo Castro-Latorre
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Lorena Barrientos
- Facultad de Química y de Farmacia, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago de Chile, Chile
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
| | - Fernando Mendizabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Zion N, Friedman A, Levy N, Elbaz L. Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800406. [PMID: 29682822 DOI: 10.1002/adma.201800406] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 06/08/2023]
Abstract
One of the most important chemical reactions for renewable energy technologies such as fuel cells and metal-air batteries today is oxygen reduction. Due to the relatively sluggish reaction kinetics, catalysts are necessary to generate high power output. The most common catalyst for this reaction is platinum, but its scarcity and derived high price have raised the search for abundant nonprecious metal catalysts. Inspired from enzymatic processes which are known to catalyze oxygen reduction reaction efficiently, employing transition metal complexes as their catalytic centers, many are working on the development of bioinspired and biomimetic catalysts of this class. This research news article gives a glimpse of the recent progress on the development of bioinspired molecular catalyst for oxygen reduction, highlighting the importance of the molecular structure of the catalysts, from advancements in porphyrins and phthalocyanines to the most recent work on corroles, and 3D networks such as metal-organic frameworks and polymeric networks, all with nonpyrolyzed, well-defined molecular catalysts for oxygen reduction reaction.
Collapse
Affiliation(s)
- Noam Zion
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ariel Friedman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Naomi Levy
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lior Elbaz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
11
|
Pizarro A, Abarca G, Gutiérrez-Cerón C, Cortés-Arriagada D, Bernardi F, Berrios C, Silva JF, Rezende MC, Zagal JH, Oñate R, Ponce I. Building Pyridinium Molecular Wires as Axial Ligands for Tuning the Electrocatalytic Activity of Iron Phthalocyanines for the Oxygen Reduction Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01479] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ana Pizarro
- Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Gabriel Abarca
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Chile, Camino la Pirámide 5750, Huechuraba 8580745 Santiago, Chile
| | - Cristian Gutiérrez-Cerón
- Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, 8940577 San Joaquín, Santiago, Chile
| | - Fabiano Bernardi
- Institute of Physics, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Cristhian Berrios
- Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Juan F. Silva
- Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Marcos C. Rezende
- Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - José H. Zagal
- Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Rubén Oñate
- Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Ingrid Ponce
- Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Casilla 40, Correo 33, Santiago 9170022, Chile
| |
Collapse
|
12
|
Herrera S, Tasca F, Williams FJ, Calvo EJ. Adsorption of 4,4'-Dithiodipyridine Axially Coordinated to Iron(II) Phthalocyanine on Au(111) as a New Strategy for Oxygen Reduction Electrocatalysis. Chemphyschem 2018; 19:1599-1604. [PMID: 29601134 DOI: 10.1002/cphc.201800139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/08/2022]
Abstract
The coordination of PySSPy to FePc was monitored by UV/Vis spectroscopy while the adsobed FePc, anchored by PyS-Au(111), was examined by in situ STM in 0.1 M HClO4 and X-ray photoelectron spectroscopy (XPS). Rotating-disc-electrode (RDE) and linear-sweep-voltammetry (LSV) studies on the resulting FePc-modified Au(111) electrodes in an oxygen-saturated 0.1 M NaOH electrolyte exhibit excellent electrocatalytic properties for the oxygen reduction reaction (ORR), with a smaller overpotential than that observed for Au(111) with FePc deposited by direct adsorption from a benzene solution.
Collapse
Affiliation(s)
- Santiago Herrera
- Department of Inorganic Chemistry, Analytical and Chemical Physics, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| | - Federico Tasca
- Department of Chemistry Materials, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Federico J Williams
- Department of Inorganic Chemistry, Analytical and Chemical Physics, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| | - Ernesto J Calvo
- Department of Inorganic Chemistry, Analytical and Chemical Physics, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| |
Collapse
|
13
|
Tetra(3-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl)phenoxy) substituted cobalt, iron and manganese phthalocyanines: Synthesis and electrochemical analysis. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Miranda-Rojas S, Sierra-Rosales P, Muñoz-Castro A, Arratia-Pérez R, Zagal JH, Mendizábal F. Catalytic aspects of metallophthalocyanines adsorbed on gold-electrode. Theoretical exploration of the binding nature role. Phys Chem Chem Phys 2016; 18:29516-29525. [DOI: 10.1039/c6cp06156g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a computational study of supramolecular complexes of metallophthalocyanines (MPcs, M = Fe, Co, Cu) on gold substrates, and the effect of the substrate on their electrocatalytic properties at the DFT and DFT-D3 levels.
Collapse
Affiliation(s)
- Sebastián Miranda-Rojas
- Chemical Processes and Catalysis (CPC)
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Santiago
| | - Paulina Sierra-Rosales
- Centro de Investigación de los Procesos Redox (CiPRex)
- Facultad de Ciencias Químicas y Farmacéuticas
- Universidad de Chile
- Santiago
- Chile
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares
- Universidad Autonoma de Chile
- Santiago
- Chile
| | - Ramiro Arratia-Pérez
- Center for Applied Nanosciences (CENAP)
- Universidad Andres Bello
- Santiago
- Chile
- Doctorado en Fisicoquímica Molecular
| | - José Heráclito Zagal
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago 9170022
- Chile
| | | |
Collapse
|