1
|
Siqueira GP, Araújo DAG, de Faria LV, Ramos DLO, Matias TA, Richter EM, Paixão TRLC, Muñoz RAA. A novel 3D-printed graphite/polylactic acid sensor for the electrochemical determination of 2,4,6-trinitrotoluene residues in environmental waters. CHEMOSPHERE 2023; 340:139796. [PMID: 37586488 DOI: 10.1016/j.chemosphere.2023.139796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Here, lab-made graphite and polylactic acid (Gpt-PLA) biocomposite materials were used to additively manufacture electrodes via the fused deposition modeling (FDM) technique for subsequent determination of the explosive 2,4,6-trinitrotoluene (TNT, considered a persistent organic pollutant). The surface of the 3D-printed material was characterized by SEM and Raman, which revealed high roughness and the presence of defects in the graphite structure, which enhanced the electrochemical response of TNT. The 3D-printed Gpt-PLA electrode coupled to square wave voltammetry (SWV) showed suitable performance for fastly determining the explosive residues (around 7 s). Two reduction processes at around -0.22 V and -0.36 V were selected for TNT detection, with linear ranges between 1.0 and 10.0 μM. Moreover, detection limits of 0.52 and 0.66 μM were achieved for both reduction steps. The proposed method was applied to determine TNT in different environmental water samples (tap water, river water, and seawater) without a dilution step (direct analysis). Recovery values between 98 and 106% confirmed the accuracy of the analyses. Additionally, adequate selectivity was achieved even in the presence of other explosives commonly used by military agencies, metallic ions commonly found in water, and also some electroactive camouflage species. Such results indicate that the proposed device is promising to quantify TNT residues in environmental samples, a viable on-site analysis strategy.
Collapse
Affiliation(s)
- Gilvana P Siqueira
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Diele A G Araújo
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, 05508-900, Brazil.
| | - Lucas V de Faria
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil; Universidade Federal Fluminense, Departamento de Química Analítica, Outeiro São João Batista s/n, Centro, Niterói, RJ, Brazil
| | - David L O Ramos
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Tiago A Matias
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Eduardo M Richter
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Thiago R L C Paixão
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, 05508-900, Brazil
| | - Rodrigo A A Muñoz
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Effect of alumina supported on glassy-carbon electrode on the electrochemical reduction of 2,4,6-trinitrotoluene: A simple strategy for its selective detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Selvaraj V, Thomas N, Anthuvan AJ, Nagamony P, Chinnuswamy V. Amine-functionalized diatom frustules: a platform for specific and sensitive detection of nitroaromatic explosive derivative. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20540-20549. [PMID: 29243153 DOI: 10.1007/s11356-017-0916-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
In the present study, an attempt was made to develop a proof of concept for the detection of nitroaromatic explosive derivatives through the photoluminescence (PL) quenching process using functionalized diatom frustules as a sensing platform. The diatom frustules are composed of nanostructured, highly porous biogenic silica material and emit strong, visible blue PL upon UV excitation. PL-active biosilica was isolated from the marine diatom Nitzschia sp. and was amine-functionalized to develop a sensing platform. Functionalized diatom frustules were further characterized using field emission scanning electron microscope and a series of spectroscopic methods. When nitroaromatic compounds were bound to the functionalized diatom frustules biosilica, the PL intensity from the functionalized biosilica was partially quenched due to the electrophilic nature of the nitro (-NO) groups. The quenching process confirmed the Meisenheimer complex formation and was investigated by using Fourier transform infrared spectroscopy and time-resolved photoluminescence studies. The developed platform was further evaluated for its sensitivity and specificity, and the limit of detection (LOD) of the assay was determined as 1 μM for a series of nitroaromatic explosive compounds. In conclusion, the developed sensing platform will have great utility in the development of on-site detection platforms for sensitive detection of warfare explosive nitroaromatic compounds from the environment.
Collapse
Affiliation(s)
- Viji Selvaraj
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Neethi Thomas
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Allen Joseph Anthuvan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Ponpandian Nagamony
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Viswanathan Chinnuswamy
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu, 641046, India.
| |
Collapse
|
4
|
Castro SVF, Silva MNT, Tormin TF, Santana MHP, Nossol E, Richter EM, Munoz RAA. Highly-sensitive voltammetric detection of trinitrotoluene on reduced graphene oxide/carbon nanotube nanocomposite sensor. Anal Chim Acta 2018; 1035:14-21. [PMID: 30224132 DOI: 10.1016/j.aca.2018.06.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
This work presents the highly-sensitive detection of 2,4,6-trinitrotoluene (TNT) on reduced graphene oxide/multi-walled carbon nanotube (rGO/MWCNT) nanocomposite sensor. The formation of a thin film of this nanocomposite occurred at the cyclohexane/water immiscible interface of a mixture of MWCNT and rGO in the biphasic solution. The film was transferred to a boron-doped diamond (BDD) electrode for the square-wave voltammetric detection of TNT, which presented improved analytical characteristics in comparison with bare BDD and after modification with precursors. Electrochemical impedance spectroscopy also revealed the faster electron transfer for a redox probe on the nanocomposite modified surface. The synergistic properties of both carbon nanomaterials in the thin film modified surface resulted in a TNT sensor with a detection limit of 0.019 μmol L-1 within a wide linear range (0.5-1100 μmol L-1), with superior performance in comparison with other electrochemical sensors produced with carbon nanomaterials. This new material provides great promises for the highly-sensitive detection of other nitroaromatic explosives as well as other analytes. Moreover, the interfacial method enables the production of homogeneous and stable films on large coated areas as well as the large-scale production of electrochemical sensors.
Collapse
Affiliation(s)
- Sílvia V F Castro
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil
| | - Murilo N T Silva
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil
| | - Thiago F Tormin
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil
| | - Mário H P Santana
- Unidade Técnico-Científica, Superintendência Regional do Departamento de Polícia Federal em MG, 38408-680, Uberlândia, Minas Gerais, Brazil
| | - Edson Nossol
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil
| | - Eduardo M Richter
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil
| | - Rodrigo A A Munoz
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Yu HA, DeTata DA, Lewis SW, Silvester DS. Recent developments in the electrochemical detection of explosives: Towards field-deployable devices for forensic science. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Gillanders RN, Campbell IA, Glackin JME, Samuel IDW, Turnbull GA. Ormosil-coated conjugated polymers for the detection of explosives in aqueous environments. Talanta 2017; 179:426-429. [PMID: 29310255 DOI: 10.1016/j.talanta.2017.10.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
Abstract
A fluorescence-based sensor for detecting explosives, based on a conjugated polymer coated with an ormosil layer, has been developed for use in aqueous environments. The conjugated polymer Super Yellow was spin-coated onto glass substrates prior to a further spin-coating of an MTEOS/TFP-TMOS-based ormosil film, giving an inexpensive, solution-based barrier material for ruggedization of the polymer to an aqueous environment. The sensors showed good sensitivity to 2,4-DNT in the aqueous phase at micromolar and millimolar concentrations, and also showed good recovery of fluorescence when the explosive was removed.
Collapse
Affiliation(s)
- Ross N Gillanders
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, Fife KY16 9SS, Scotland, United Kingdom
| | - Iain A Campbell
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, Fife KY16 9SS, Scotland, United Kingdom
| | - James M E Glackin
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, Fife KY16 9SS, Scotland, United Kingdom
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, Fife KY16 9SS, Scotland, United Kingdom.
| | - Graham A Turnbull
- Organic Semiconductor Centre, SUPA, School of Physics & Astronomy, University of St Andrews, Fife KY16 9SS, Scotland, United Kingdom.
| |
Collapse
|
7
|
|
8
|
Click-modified hexahomotrioxacalix[3]arenes as fluorometric and colorimetric dual-modal chemosensors for 2,4,6-trinitrophenol. Anal Chim Acta 2016; 936:216-21. [DOI: 10.1016/j.aca.2016.06.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 11/23/2022]
|
9
|
Sensitive Colorimetric Detection of Explosive 2,6-Bis(picrylamino)pyridine after Preconcentration by Dispersive Liquid-Liquid Microextraction. PROPELLANTS EXPLOSIVES PYROTECHNICS 2015. [DOI: 10.1002/prep.201500147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Čapka L, Večeřa Z, Mikuška P, Šesták J, Kahle V, Bumbová A. A portable device for fast analysis of explosives in the environment. J Chromatogr A 2015; 1388:167-73. [DOI: 10.1016/j.chroma.2015.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/16/2015] [Accepted: 02/16/2015] [Indexed: 11/26/2022]
|