Halder G, Ghosh D, Ali MY, Sahasrabudhe A, Bhattacharyya S. Interface Engineering in Quantum-Dot-Sensitized Solar Cells.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018;
34:10197-10216. [PMID:
29584956 DOI:
10.1021/acs.langmuir.8b00293]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The unique properties of II-VI semiconductor nanocrystals such as superior light absorption, size-dependent optoelectronic properties, solution processability, and interesting photophysics prompted quantum-dot-sensitized solar cells (QDSSCs) as promising candidates for next-generation photovoltaic (PV) technology. QDSSCs have advantages such as low-cost device fabrication, multiple exciton generation, and the possibility to push over the theoretical power conversion efficiency (PCE) limit of 32%. In spite of dedicated research efforts to enhance the PCE, optimize individual solar cell components, and better understand the underlying science, QDSSCs have unfortunately not lived up to their potential due to shortcomings in the fabrication process and with the QDs themselves. In this feature article, we briefly discuss the QDSSC concepts and mechanisms of the charge carrier recombination pathways that occur at multiple interfaces, viz., (i) metal oxide (MO)/QDs, (ii) MO/QDs/electrolyte, and (iii) counter electrode (CE)/electrolyte. The rational strategies that have been developed to minimize/block these charge recombination pathways are elaborated. The article concludes with a discussion of the present challenges in fabricating efficient devices and future prospects for QDSSCs.
Collapse