1
|
Kogularasu S, Lee YY, Sriram B, Wang SF, George M, Chang-Chien GP, Sheu JK. Unlocking Catalytic Potential: Exploring the Impact of Thermal Treatment on Enhanced Electrocatalysis of Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202311806. [PMID: 37773568 DOI: 10.1002/anie.202311806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
In the evolving field of electrocatalysis, thermal treatment of nano-electrocatalysts has become an essential strategy for performance enhancement. This review systematically investigates the impact of various thermal treatments on the catalytic potential of nano-electrocatalysts. The focus encompasses an in-depth analysis of the changes induced in structural, morphological, and compositional properties, as well as alterations in electro-active surface area, surface chemistry, and crystal defects. By providing a comprehensive comparison of commonly used thermal techniques, such as annealing, calcination, sintering, pyrolysis, hydrothermal, and solvothermal methods, this review serves as a scientific guide for selecting the right thermal technique and favorable temperature to tailor the nano-electrocatalysts for optimal electrocatalysis. The resultant modifications in catalytic activity are explored across key electrochemical reactions such as electrochemical (bio)sensing, catalytic degradation, oxygen reduction reaction, hydrogen evolution reaction, overall water splitting, fuel cells, and carbon dioxide reduction reaction. Through a detailed examination of the underlying mechanisms and synergistic effects, this review contributes to a fundamental understanding of the role of thermal treatments in enhancing electrocatalytic properties. The insights provided offer a roadmap for future research aimed at optimizing the electrocatalytic performance of nanomaterials, fostering the development of next-generation sensors and energy conversion technologies.
Collapse
Affiliation(s)
- Sakthivel Kogularasu
- Super Micro Mass Research and Technology Center, Center for Environmental Toxin and Emerging-Contaminant Research, Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Yen-Yi Lee
- Super Micro Mass Research and Technology Center, Center for Environmental Toxin and Emerging-Contaminant Research, Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Guo-Ping Chang-Chien
- Super Micro Mass Research and Technology Center, Center for Environmental Toxin and Emerging-Contaminant Research, Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan)
| |
Collapse
|
2
|
Zhang S, Chen M, Zhao X, Cai J, Yan W, Yen JC, Chen S, Yu Y, Zhang J. Advanced Noncarbon Materials as Catalyst Supports and Non-noble Electrocatalysts for Fuel Cells and Metal–Air Batteries. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-020-00085-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Li Y, Zhang Z, Xiao Z, Zhao G, Song H, Liu Y, Zeng J. Stable and active Pt colloid preparation by modified citrate reduction and a mechanism analysis of inorganic additives. J Colloid Interface Sci 2020; 572:74-82. [PMID: 32222604 DOI: 10.1016/j.jcis.2020.03.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022]
Abstract
Ultra-small and monodispersed Pt nanoparticles (NPs) have been successfully synthesized in polymer electrolyte membrane fuel cells. The process normally involves the use of capping agents, organic species, templates, and substrates and is thus complex. Hence, obtaining Pt NPs with a clean surface is challenging. In this study, a method for preparing stable and highly dispersed Pt NPs with clean surfaces is proposed. The method involves the use of a modified Na3C6H5O7 reduction process assisted by NaNO3 stabilization. The specific complexations of NO2- ions possibly alter the reaction kinetics and lower the growth rate of Pt NPs by retarding the reduction reaction. The optimized Pt/carbon nanotube (CNT) catalysts exhibit high mass activity and moderate activity decay after 10,000 times of potential cycling compared with commercially available Pt/C catalysts. Then, membrane electrode assemblies based on the resultant catalysts are characterized. The cell performance of 744 mW cm-2 (maximum power density) is achieved after the optimized Pt/CNT catalysts are used in carbon black.
Collapse
Affiliation(s)
- Yuexia Li
- Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Zhiyi Zhang
- Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Zhuojie Xiao
- Key Lab for Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guizhe Zhao
- Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Huiyu Song
- Key Lab for Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yaqing Liu
- Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Jianhuang Zeng
- Key Lab for Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
4
|
Wang Z, Zhang F, Zou H, Yuan Y, Wang H, Xia J, Wang Z. Preparation of a Pt/NiFe layered double hydroxide/reduced graphene oxide composite as an electrocatalyst for methanol oxidation. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Gwebu SS, Nomngongo PN, Maxakato NW. Pt-Sn Nanoparticles Supported on Carbon Nanodots as Anode Catalysts for Alcohol Electro-oxidation in Acidic Conditions. ELECTROANAL 2018. [DOI: 10.1002/elan.201800098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sandile Surprise Gwebu
- Department of Applied Chemistry; University of Johannesburg, P.O. Box 17011; Doornfontein 2028 South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Applied Chemistry; University of Johannesburg, P.O. Box 17011; Doornfontein 2028 South Africa
| | - Nobanathi Wendy Maxakato
- Department of Applied Chemistry; University of Johannesburg, P.O. Box 17011; Doornfontein 2028 South Africa
| |
Collapse
|
6
|
Kuriganova AB, Leontyeva DV, Ivanov S, Bund A, Smirnova NV. Electrochemical dispersion technique for preparation of hybrid MO x –C supports and Pt/MO x –C electrocatalysts for low-temperature fuel cells. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-1006-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Bao WQ, He XD, Wang Y, He JB. Diffusion-restricted electrodeposition of platinum on solid carbon paste for electrocatalytic oxidation of methanol. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Qu XM, You LX, Tian XC, Zhang BW, Mahadevan GD, Jiang YX, Sun SG. CeO2 nanorods with high energy surfaces as electrocatalytical supports for methanol electrooxidation. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
The Use of C-MnO2 as Hybrid Precursor Support for a Pt/C-MnxO1+x Catalyst with Enhanced Activity for the Methanol Oxidation Reaction (MOR). Catalysts 2015. [DOI: 10.3390/catal5031399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|