1
|
Lee H, Reginald SS, Sravan JS, Lee M, Chang IS. Advanced strategies for enzyme-electrode interfacing in bioelectrocatalytic systems. Trends Biotechnol 2024:S0167-7799(24)00344-5. [PMID: 39674782 DOI: 10.1016/j.tibtech.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Advances in protein engineering-enabled enzyme immobilization technologies have significantly improved enzyme-electrode wiring in enzymatic electrochemical systems, which harness natural biological machinery to either generate electricity or synthesize biochemicals. In this review, we provide guidelines for designing enzyme-electrodes, focusing on how performance variables change depending on electron transfer (ET) mechanisms. Recent advancements in enzyme immobilization technologies are summarized, highlighting their contributions to extending enzyme-electrode sustainability (up to months), enhancing biosensor sensitivity, improving biofuel cell performance, and setting a new benchmark for turnover frequency in bioelectrocatalysis. We also highlight state-of-the-art protein-engineering approaches that enhance enzyme-electrode interfacing through three key principles: protein-protein, protein-ligand, and protein-inorganic interactions. Finally, we discuss prospective avenues in strategic protein design for real-world applications.
Collapse
Affiliation(s)
- Hyeryeong Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Stacy Simai Reginald
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Professorship for Electrobiotechnology, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing 94315, Germany
| | - J Shanthi Sravan
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mungyu Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
2
|
Feng D, Xiao M, Yang P. A Sensitive Electrochemiluminescence Urea Sensor for Dynamic Monitoring of Urea Transport in Living Cells. Anal Chem 2023; 95:766-773. [PMID: 36525268 DOI: 10.1021/acs.analchem.2c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A multiple signal-amplified electrochemiluminescence (ECL) urea sensor was designed based on a self-enhanced probe and SiO2 photonic crystals for dynamic tracking of urea transmembrane transport. The self-enhanced probe (AuNR@Ru-LA) prepared by loading polyethyleneimine (PEI), lactobionic acid (LA), and Ru(dcbpy)32+ on gold nanorods (AuNRs) generated an initial ECL signal, and then the intensity was multiple-amplified by the enhanced light-scattering effect of SiO2 photonic crystals and the co-reaction with urea. The as-prepared sensor exhibited excellent performance for the detection of urea in the range of 1.0 × 10-10 to 1.0 × 10-4 M with a detection limit of 8.8 × 10-11 M at (3σ)/S. The AuNR@Ru-LA probes were labeled on HepG2 cells to construct a cytosensor with a detection range of 1.0 × 103 to 2.0 × 106 cells mL-1. In addition, the dynamic changes of the extracellular urea concentration were tracked by monitoring the ECL signal of the cytosensor to study urea transmembrane transport. The developed strategy realized the amplification of multiple ECL signals and the tracking of urea transmembrane transport, which provided a novel dynamic detection method for small biomolecules.
Collapse
Affiliation(s)
- Defen Feng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong511443, China
| | - Mingxing Xiao
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong511443, China
| | - Peihui Yang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong511443, China
| |
Collapse
|
3
|
Mielech-Łukasiewicz K. Determination of Terbinafine at a Boron-Doped Diamond (BDD) Electrode Modified with Polypyrrole and γ-Cyclodextrin by Square Wave Voltammetry (SWV). ANAL LETT 2023. [DOI: 10.1080/00032719.2022.2164587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Botewad SN, Gaikwad DK, Girhe NB, Thorat HN, Pawar PP. Urea biosensors: A comprehensive review. Biotechnol Appl Biochem 2021; 70:485-501. [PMID: 33847399 DOI: 10.1002/bab.2168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023]
Abstract
Present study is specially designed for the recent advances in biosensors to detect and quantify urea concentration. Urea (carbamide) is an organic compound made up of the carbonyl (C=O) functional group with two -NH2 groups having chemical formula CO (NH2 )2 . In nature, urea is found everywhere as the result of various processes, and in the human body, urea is an end product of nitrogen metabolism. An excessive concentration of urea in the human body is responsible for different critical diseases such as indigestion, acidity, ulcers, cancer, malfunctioning of kidneys, renal failure, urinary tract obstruction, dehydration, shock, burns, gastrointestinal bleeding, and so on. Moreover, below the normal level may cause hepatic failure, nephritic syndrome, cachexia, and so on. As well as in various fields such as fishery, dairy, food preservation, agriculture, and so on, urea is normally found and its detection is necessary. In urea biosensors, enzyme urease (Urs) is used as a bioreceptor element and retains its long last activity is the critical issue in front of the researcher. During recent decades, different nanoparticles (zinc oxide, nickel oxide, iron oxide, titanium dioxide, tin(IV) oxide, etc.), conducting polymer (polyaniline, polypyrrole, etc.), conducting polymer-nanoparticles composites, carbon materials (carbon nanotubes, graphene oxide, reduced graphene oxide graphene), and so on are used in urea biosensors. The main emphasis of the present study is to provide cumulative and comprehensive information about the sensing parameters of urea biosensors based on the materials used for enzyme immobilization. Besides this special task, this review provides a fruitful discussion on the basics of biosensors briefly for new and upcoming researchers. Thus, the present study may act as a gift for a large audience that come from different fields and are working in biosensors research.
Collapse
Affiliation(s)
- Sunil N Botewad
- Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | | | - Nitin B Girhe
- Jawahar Science, Commerce and Arts College, Andoor, Tq. Tuljapur District, Osmanabad, India
| | - Hanuman N Thorat
- Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - Pravina P Pawar
- Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
5
|
Healy B, Yu T, C. da Silva Alves D, Okeke C, Breslin CB. Cyclodextrins as Supramolecular Recognition Systems: Applications in the Fabrication of Electrochemical Sensors. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1668. [PMID: 33800708 PMCID: PMC8036645 DOI: 10.3390/ma14071668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Supramolecular chemistry, although focused mainly on noncovalent intermolecular and intramolecular interactions, which are considerably weaker than covalent interactions, can be employed to fabricate sensors with a remarkable affinity for a target analyte. In this review the development of cyclodextrin-based electrochemical sensors is described and discussed. Following a short introduction to the general properties of cyclodextrins and their ability to form inclusion complexes, the cyclodextrin-based sensors are introduced. This includes the combination of cyclodextrins with reduced graphene oxide, carbon nanotubes, conducting polymers, enzymes and aptamers, and electropolymerized cyclodextrin films. The applications of these materials as chiral recognition agents and biosensors and in the electrochemical detection of environmental contaminants, biomolecules and amino acids, drugs and flavonoids are reviewed and compared. Based on the papers reviewed, it is clear that cyclodextrins are promising molecular recognition agents in the creation of electrochemical sensors, chiral sensors, and biosensors. Moreover, they have been combined with a host of materials to enhance the detection of the target analytes. Nevertheless, challenges remain, including the development of more robust methods for the integration of cyclodextrins into the sensing unit.
Collapse
Affiliation(s)
- Bronach Healy
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Tian Yu
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande 90040-060, Brazil
| | - Cynthia Okeke
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; (B.H.); (T.Y.); (D.C.d.S.A.); (C.O.)
| |
Collapse
|
6
|
Enzyme activity of thiophene-fluorene based-copolymer blended with urease in thin films. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
A succinct review of refined chemical sensor systems based on conducting polymer–cyclodextrin hybrids. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
|
9
|
The incorporation and controlled release of dopamine from a sulfonated β–cyclodextrin–doped conducting polymer. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1733-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Studies on the formation and properties of polypyrrole doped with ionised β-cyclodextrins: influence of the anionic pendants. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-04171-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Goh K, Li H, Lam K. Urease catalytic behaviors induced by both urea and salt concentrations in ion-exchange hydrogels as dialysis membranes. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Schneider S, Füser M, Bolte M, Terfort A. Self-assembled monolayers of aromatic pyrrole derivatives: Electropolymerization and electrocopolymerization with pyrrole. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Li Z, Zhang Q, Huang H, Ren C, Ouyang S, Zhao Q. L-noradrenaline functionalized near-infrared fluorescence CdSeTe probe for the determination of urea and bioimaging of HepG2 Cells. Talanta 2017; 171:16-24. [DOI: 10.1016/j.talanta.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/28/2022]
|
14
|
Development of a multiphysics model to characterize the responsive behavior of urea-sensitive hydrogel as biosensor. Biosens Bioelectron 2017; 91:673-679. [DOI: 10.1016/j.bios.2017.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 11/23/2022]
|
15
|
Conjugated polymers nanostructured as smart interfaces for controlling the catalytic properties of enzymes. J Colloid Interface Sci 2016; 476:206-213. [DOI: 10.1016/j.jcis.2016.05.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/17/2022]
|
16
|
|
17
|
Akerboom S, Pujari SP, Turak A, Kamperman M. Controlled Fabrication of Polypyrrole Surfaces with Overhang Structures by Colloidal Templating. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16507-17. [PMID: 26151156 DOI: 10.1021/acsami.5b03903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here we present the fabrication of polypyrrole (PPy) surfaces with a controlled overhang structure. Regularly structured PPy films were produced using interfacial polymerization around a sacrificial crystalline colloidal monolayer at the air/water interface. The morphology of the final inverse colloidal PPy film is controlled by the amount of monomer, the monomer: oxidant ratio and polymerization time. The PPy films exhibit an overhang structure due to depth of particle immersion in the water phase. As a result of the overhang structure, the PPy films are made hydrophobic, although the material itself is hydrophilic. The apparent contact angle of water on the structured surfaces is 109.5°, which is in agreement with the predicted contact angle using the Cassie-Baxter equation for air-filled cavities. This fabrication technique is scalable and can be readily extended to other systems where controlled wettability is required.
Collapse
Affiliation(s)
- Sabine Akerboom
- †Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| | - Sidharam P Pujari
- ‡Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Ayse Turak
- §Department of Engineering, Physics McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Marleen Kamperman
- †Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
18
|
Yang ZP, Liu X, Zhang CJ, Liu BZ. A high-performance nonenzymatic piezoelectric sensor based on molecularly imprinted transparent TiO2 film for detection of urea. Biosens Bioelectron 2015; 74:85-90. [PMID: 26120814 DOI: 10.1016/j.bios.2015.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/21/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Transparent photocatalytic surfaces are of ever increasing importance for the enhancement of the photocatalytic efficiency. Here, the highly ordered transparent TiO2 nanotube arrays were prepared by the anodization and thermal annealing of titanium layer deposited onto the glass substrate, and a novel nonenzymatic piezoelectric sensor was developed for urea detection based on the modification of molecularly imprinted TiO2 thin film onto transparent TiO2 nanotube arrays. The performance of the fabricated sensor was evaluated and the results indicated that the sensor exhibited high sensitivity in urea detection, with a linear range from 0.04 to 120 μM and a limit of detection of 0.01 μM. Moreover, the sensor presented outstanding selectivity while used in coexisting systems containing various interferents with high concentration. The analytical application of the urea sensor confirmed the feasibility of urea detection in urine sample.
Collapse
Affiliation(s)
- Zheng-peng Yang
- Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xuan Liu
- Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Chun-jing Zhang
- Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Bao-zhong Liu
- Institute of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|
19
|
Kochana J, Hnida K, Sulka G, Knihnicki P, Kozak J, Gilowska A. Application of polypyrrole nanowires for the development of a tyrosinase biosensor. CHEMICAL PAPERS 2015. [DOI: 10.1515/chempap-2015-0114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolypyrrole nanowires (PPyNWs) were fabricated and examined as a structural component of amperometric biosensor matrix. An enzyme, tyrosinase (TYR), was immobilized onto PPyNWs using glutaraldehyde (GA). Matrix composite morphology was investigated using scanning electron microscopy. Electrochemical behavior of the prepared PPyNWs/GA/TYR biosensor towards catechol was studied and the assessment of its analytical characteristics was carried out taking into account linear range, sensitivity, repeatability, reproducibility and operational stability.
Collapse
|