1
|
Kim J, Usama M, Exner KS, Joo SH. Renaissance of Chlorine Evolution Reaction: Emerging Theory and Catalytic Materials. Angew Chem Int Ed Engl 2024:e202417293. [PMID: 39373350 DOI: 10.1002/anie.202417293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Chlorine (Cl2) is one of the most important commodity chemicals that has found widespread utility in chemical industry. Most Cl2 is currently produced via the chlorine evolution reaction (CER) at the anode of chlor-alkali electrolyzers, for which platinum group-metal (PGM)-based mixed metal oxides (MMOs) have been used for more than half a century. However, MMOs suffer from the use of expensive and scarce PGMs and face selectivity problems due to the parasitic oxygen evolution reaction. Over the last decade, the field of CER catalysis has seen dramatic advances in both the theory and discovery of new catalysts. Theoretical approaches have enabled a fundamental understanding of CER mechanisms and provided catalyst design principles. The exploration of new materials has led to the discovery of CER catalysts other than MMOs, including non-PGM oxides, atomically dispersed single-site catalysts, and organic molecules, with some of which following novel reaction pathways. This minireview provides an overview of the recent advances in CER electrocatalyst research and suggests future directions for this revitalized field.
Collapse
Affiliation(s)
- Jinjong Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Muhammad Usama
- Faculty of Chemistry Theoretical Catalysis and Electrochemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Kai S Exner
- Faculty of Chemistry Theoretical Catalysis and Electrochemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), 47057, Duisburg, Germany
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Lee W, Choung S, Kim S, Hong J, Kim D, Tarpeh WA, Han JW, Cho K. Atomically Dispersed Ru-doped Ti 4O 7 Electrocatalysts for Chlorine Evolution Reaction with a Universal Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401248. [PMID: 38639029 DOI: 10.1002/smll.202401248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Chlorine has been supplied by the chlor-alkali process that deploys dimensionally stable anodes (DSAs) for the electrochemical chlorine evolution reaction (ClER). The paramount bottlenecks have been ascribed to an intensive usage of precious elements and inevitable competition with the oxygen evolution reaction. Herein, a unique case of Ru2+-O4 active motifs anchored on Magnéli Ti4O7 (Ru-Ti4O7) via a straightforward wet impregnation and mild annealing is reported. The Ru-Ti4O7 performs radically active ClER with minimal deployment of Ru (0.13 wt%), both in 5 m NaCl (pH 2.3) and 0.1 m NaCl (pH 6.5) electrolytes. Scanning electrochemical microscopy demonstrates superior ClER selectivity on Ru-Ti4O7 compared to the DSA. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a universally active ClER (over a wide range of pH and [Cl-]), through a direct adsorption of Cl- on Ru2+-O4 sites as the most plausible pathway, together with stabilized ClO* at low [Cl-] and high pH.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Chemical Engineering, Stanford University, California, 94305, USA
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokhyun Choung
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seok Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, California, 94025, USA
| | - Doyeon Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, California, 94305, USA
| | - Jeong Woo Han
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus, Incheon, 21983, Republic of Korea
| |
Collapse
|
3
|
Zhang D, Xie F, Gong H, Liu T, Kuang P, Yu J. Enhancing Ru-Cl interaction via orbital hybridization effect in Ru 0.4Sn 0.3Ti 0.3 electrode for efficient chlorine evolution. J Colloid Interface Sci 2024; 658:127-136. [PMID: 38100969 DOI: 10.1016/j.jcis.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Chlorine evolution reaction (CER) is a commercially valuable electrochemical reaction used at an industrial scale. However, oxygen evolution reaction (OER) during the electrolysis process inevitably leads to the decreased efficiency of CER. It is necessary to improve the selectivity of CER by minimizing or even eliminating the occurrence of OER. Herein, a ternary metal oxide (Ru0.4Sn0.3Ti0.3) electrode was fabricated and employed as an active and robust anode for CER. The Ru0.4Sn0.3Ti0.3 electrode exhibits an excellent CER performance in 6.0 M NaCl solution, with a low potential of 1.17 V (vs. saturated calomel electrode, SCE) at 200 mA cm-2 current density, a high Cl2 selectivity of over 90 %, and robust durability after consecutive operation for 160 h under 100 mA cm-2. The maximum O2-Cl2 potential difference between OER and CER further demonstrates the high Cl2 selectivity of Ru0.4Sn0.3Ti0.3 electrode. Theoretical studies show that the strong Ru 3d-Ti 3d orbitals hybridization effect makes the d-band center (εd) of Ru 3d and Ti 3d orbitals positively and negatively shifted, respectively, endowing Ru site with enhanced Cl adsorption ability (i.e. enhanced Ru-Cl interaction) and Ru0.4Sn0.3Ti0.3 electrode with superior CER activity. This work offers valuable insights into the development of advanced electrodes for CER in practical application.
Collapse
Affiliation(s)
- Dianzhi Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Fei Xie
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Haiming Gong
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China.
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, China.
| |
Collapse
|
4
|
Choi S, Choi WI, Lee JS, Lee CH, Balamurugan M, Schwarz AD, Choi ZS, Randriamahazaka H, Nam KT. A Reflection on Sustainable Anode Materials for Electrochemical Chloride Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300429. [PMID: 36897816 DOI: 10.1002/adma.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Chloride oxidation is a key industrial electrochemical process in chlorine-based chemical production and water treatment. Over the past few decades, dimensionally stable anodes (DSAs) consisting of RuO2 - and IrO2 -based mixed-metal oxides have been successfully commercialized in the electrochemical chloride oxidation industry. For a sustainable supply of anode materials, considerable efforts both from the scientific and industrial aspects for developing earth-abundant-metal-based electrocatalysts have been made. This review first describes the history of commercial DSA fabrication and strategies to improve their efficiency and stability. Important features related to the electrocatalytic performance for chloride oxidation and reaction mechanism are then summarized. From the perspective of sustainability, recent progress in the design and fabrication of noble-metal-free anode materials, as well as methods for evaluating the industrialization of novel electrocatalysts, are highlighted. Finally, future directions for developing highly efficient and stable electrocatalysts for industrial chloride oxidation are proposed.
Collapse
Affiliation(s)
- Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| | - Won Il Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Seo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Chang Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Andrew D Schwarz
- Milton Hill Business and Technology Centre, Infineum, Abingdon, OX13 6BB, UK
| | - Zung Sun Choi
- Infineum Singapore LLP, Singapore, 098632, Singapore
| | | | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
5
|
Dong H, Shao X, Hancox S, McBeath ST, Tarpeh WA, Hoffmann MR. Understanding the Catalytic Active Sites of Crystalline CoSb xO y for Electrochemical Chlorine Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40369-40377. [PMID: 37594304 PMCID: PMC10472335 DOI: 10.1021/acsami.3c05016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
The chlorine evolution reaction (CER) is a key reaction in electrochemical oxidation (EO) of water treatment. Conventional anodes based on platinum group metals can be prohibitively expensive, which hinders further application of EO systems. Crystalline cobalt antimonate (CoSbxOy) was recently identified as a promising alternative to conventional anodes due to its high catalytic activity and stability in acidic media. However, its catalytic sites and reaction mechanism have not yet been elucidated. This study sheds light on the catalytically active sites in crystalline CoSbxOy anodes by using scanning electrochemical microscopy to compare the CER catalytic activities of a series of anode samples with different bulk Sb/Co ratios (from 1.43 to 2.80). The results showed that Sb sites served as more active catalytic sites than the Co sites. The varied Sb/Co ratios were also linked with slightly different electronic states of each element, leading to different CER selectivities in 30 mM chloride solutions under 10 mA cm-2 current density. The high activity of Sb sites toward the CER highlighted the significance of the electronic polarization that changed the oxidation states of Co and Sb.
Collapse
Affiliation(s)
- Heng Dong
- Linde
Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaohan Shao
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Shane Hancox
- Department
of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sean T. McBeath
- Department
of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - William A. Tarpeh
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael R. Hoffmann
- Linde
Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Rahman E, Hong S, Lee J, Hong SW, Cho K. Ni-Fe Oxides/TiO 2 Heterojunction Anodes for Reactive Chlorine Generation and Mediated Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17867-17878. [PMID: 36988213 DOI: 10.1021/acsami.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Reactive chlorine-mediated electrochemical water treatment necessitates selective chlorine evolution reaction (ClER) versus parallel oxygen evolution reaction (OER) in mild pH (7-10), with minimal deployments of precious electrocatalysts. This study reports Ni0.33Fe0.67Oy/TiO2 heterojunction anode prepared by a straightforward sol-gel coating with thermal decomposition at 425 °C. The ClER current efficiency (CE, 70%) and energy efficiency (2.3 mmol W h-1) were comparable to benchmarking Ir7Ta3Oy/TiO2 at 30 mA cm-2 in 50 mM NaCl solutions with near-neutral pH. Correlations of ClER CE of variable NixFe1-xOy/TiO2 (x: 0.33, 0.8-1) with the flat-band potential and p-band center, as experimental descriptors for surface charge density, nominated the outer TiO2 to be the active ClER center. The underlying Ni0.33Fe0.67Oy, characterized as biphasic NiFe2O4 and NiO, effectively lowered the O binding energy of TiO2 by electronic interaction across the junction. The OER activity of Ni0.33Fe0.67Oy superior to the other Fe-doped Ni oxides suggested that the conductive OER intermediates generated on Ni0.33Fe0.67Oy could also facilitate the ClER as an ohmic contact. Stability tests and NH4+ degradation in synthetic and real wastewater confirmed the feasibility of Ni0.33Fe0.67Oy/TiO2 heterojunction anode for mediated water treatments in mild pH.
Collapse
Affiliation(s)
- Evandi Rahman
- Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
- Water Cycle Research Center, Korea Institute of Science and Technology, Hwarangro 14 gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Sukhwa Hong
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Jaesang Lee
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-701, Korea
| | - Seok Won Hong
- Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
- Water Cycle Research Center, Korea Institute of Science and Technology, Hwarangro 14 gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University International Campus, Incheon 21983, Republic of Korea
| |
Collapse
|
7
|
Wang D, Dong T, Heng Y, Xie Z, Jiang H, Tian M, Jiang H, Zhang Z, Ren Z, Zhu Y. Preparation of Acidic Electrolyzed Water by a RuO 2@TiO 2 Electrode with High Selectivity for Chlorine Evolution and Its Sterilization Effect. ACS OMEGA 2022; 7:23170-23178. [PMID: 35847312 PMCID: PMC9280926 DOI: 10.1021/acsomega.2c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The food hygiene problems caused by bacterial biofilms in food processing equipment are directly related to human life safety and health. Therefore, it is of great strategic significance to study new food sterilization technology. An acidic electrolyzed water (AEW) disinfectant is an electrochemical sterilization technology which has the characteristics of wide adaptability, high efficiency, and environmental friendliness. However, since the sterilization efficiency of AEW for biofilms is not ideal, it is necessary to increase the available chlorine content (ACC) in AEW. A feasible method to increase the ACC is by increasing the chlorine evolution reaction (CER) selectivity of the electrode for AEW preparation. In this paper, the RuO2@TiO2 electrode was prepared by thermal decomposition combined with high-vacuum magnetron sputtering. Compared with the oxygen evolution reaction (OER) activity of an ordinary RuO2 electrode, the OER activity of the RuO2@TiO2 electrode is significantly reduced. However, the CER activity of the RuO2@TiO2 electrode is close to the OER activity of RuO2. The CER mechanism of the RuO2@TiO2 electrode is the second electron transfer, and the OER mechanism is the formation and transformation of OHads. The potential difference between the CER and OER of the RuO2@TiO2 electrode is 174 mV, which is 65 mV higher than that of the RuO2 electrode, so the selectivity of the CER of the RuO2@TiO2 electrode is remarkably improved. During the preparation of AEW, the ACC obtained with the RuO2@TiO2 electrode is 1.7 times that obtained with the RuO2 electrode. In the sterilization experiments on Escherichia coli and Bacillus subtilis biofilms, the logarithmic killing values of AEW prepared the by RuO2@TiO2 electrode are higher than those of AEW prepared by the RuO2 electrode.
Collapse
|
8
|
Lindberg A, Diaz-Morales O, Holmin S, Cornell A. Sources of Oxygen Produced in the Chlorate Process Utilizing Dimensionally Stable Anode (DSA) Electrodes Doped by Sn and Sb. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aleksandra Lindberg
- Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Oscar Diaz-Morales
- Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Susanne Holmin
- Permascand AB, Folkets Husvägen 50, 84 199 Ljungaverk, Sweden
| | - Ann Cornell
- Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| |
Collapse
|
9
|
Lim T, Kim JH, Kim J, Baek DS, Shin TJ, Jeong HY, Lee KS, Exner KS, Joo SH. General Efficacy of Atomically Dispersed Pt Catalysts for the Chlorine Evolution Reaction: Potential-Dependent Switching of the Kinetics and Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Taejung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jae Hyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jinjong Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Du San Baek
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, 80 Jigok-ro, Pohang 37673, Republic of Korea
| | - Kai S. Exner
- Faculty of Chemistry, Theoretical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
10
|
Huang J, Hou M, Wang J, Teng X, Niu Y, Xu M, Chen Z. RuO2 nanoparticles decorate belt-like anatase TiO2 for highly efficient chlorine evolution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Exner KS. Overpotential‐Dependent Volcano Plots to Assess Activity Trends in the Competing Chlorine and Oxygen Evolution Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai S. Exner
- Sofia University Faculty of Chemistry and Pharmacy Department of Physical Chemistry 1 James Bourchier Avenue 1164 Sofia Bulgaria
| |
Collapse
|
12
|
Sandin S, Abo Hamad A, Cuartero M, de Marco R, Crespo GA, Bäckström J, Cornell A. Deactivation and selectivity for electrochemical ozone production at Ni- and Sb-doped SnO2 / Ti electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Exner KS. Design criteria for the competing chlorine and oxygen evolution reactions: avoid the OCl adsorbate to enhance chlorine selectivity. Phys Chem Chem Phys 2020; 22:22451-22458. [PMID: 32996945 DOI: 10.1039/d0cp03667f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of gaseous chlorine within chlor-alkali electrolysis is accompanied by a selectivity problem, as the evolution of gaseous oxygen constitutes a detrimental side reaction in the same potential range. As such, the development of electrode materials with high selectivity toward the chlorine evolution reaction is of particular importance to the chemical industry. Insight into the elementary reaction steps is ultimately required to comprehend chlorine selectivity on a molecular level. Commonly, linear scaling relationships are analyzed by the construction of a volcano plot, using the binding energy of oxygen, ΔEO, as a descriptor in the analysis. The present article reinvestigates the selectivity problem of the competing chlorine and oxygen evolution reactions by applying a different strategy compared to previous literature studies. On the one hand, a unifying material-screening framework that, besides binding energies, also includes the applied overpotential, kinetics, and the electrochemical-step symmetry index is used to comprehend trends in this selectivity issue for transition-metal oxide-based electrodes. On the other hand, the free-energy difference between the adsorbed oxygen and adsorbed hydroxide, ΔG2, rather than ΔEO is used as a descriptor in the analysis. It is demonstrated that the formation of the OCl adsorbate within the chlorine evolution reaction inherently limits chlorine selectivity, whereas, in the optimum case, the formation of the Cl intermediate can result in significantly higher chlorine selectivity. This finding is used to derive the design criteria for highly selective chlorine evolution electrocatalysts, which can be used in the future to search for potential electrode compositions by material-screening techniques.
Collapse
Affiliation(s)
- Kai S Exner
- Sofia University, Faculty of Chemistry and Pharmacy, Department of Physical Chemistry, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.
| |
Collapse
|
14
|
Deng L, Liu Y, Zhao G, Chen J, He S, Zhu Y, Chai B, Ren Z. Preparation of electrolyzed oxidizing water by TiO2 doped IrO2-Ta2O5 electrode with high selectivity and stability for chlorine evolution. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Saha S, Kishor K, Pala RGS. Dissolution induced self-selective Zn- and Ru-doped TiO2 structure for electrochemical generation of KClO3. Catal Sci Technol 2018. [DOI: 10.1039/c7cy01849e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We demonstrate an electrochemical approach to prepare a highly active and stable (Zn, Ru)-doped TiO2 (Ru0.26Ti0.73Zn0.01Ox) for electrochemical generation of KClO3.
Collapse
Affiliation(s)
- Sulay Saha
- Department of Chemical Engineering
- Indian Institute of Technology
- Kanpur
- India
| | - Koshal Kishor
- Department of Chemical Engineering
- Indian Institute of Technology
- Kanpur
- India
| | - Raj Ganesh S. Pala
- Department of Chemical Engineering
- Indian Institute of Technology
- Kanpur
- India
- Materials Science Programme
| |
Collapse
|
16
|
Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis. CHEMSUSCHEM 2016; 9:962-72. [PMID: 27010750 DOI: 10.1002/cssc.201501581] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/29/2016] [Indexed: 05/06/2023]
Abstract
Seawater is an abundant water resource on our planet and its direct electrolysis has the advantage that it would not compete with activities demanding fresh water. Oxygen selectivity is challenging when performing seawater electrolysis owing to competing chloride oxidation reactions. In this work we propose a design criterion based on thermodynamic and kinetic considerations that identifies alkaline conditions as preferable to obtain high selectivity for the oxygen evolution reaction. The criterion states that catalysts sustaining the desired operating current with an overpotential <480 mV in alkaline pH possess the best chance to achieve 100 % oxygen/hydrogen selectivity. NiFe layered double hydroxide is shown to satisfy this criterion at pH 13 in seawater-mimicking electrolyte. The catalyst was synthesized by a solvothermal method and the activity, surface redox chemistry, and stability were tested electrochemically in alkaline and near-neutral conditions (borate buffer at pH 9.2) and under both fresh seawater conditions. The Tafel slope at low current densities is not influenced by pH or presence of chloride. On the other hand, the addition of chloride ions has an influence in the temporal evolution of the nickel reduction peak and on both the activity and stability at high current densities at pH 9.2. Faradaic efficiency close to 100 % under the operating conditions predicted by our design criteria was proven using in situ electrochemical mass spectrometry.
Collapse
Affiliation(s)
- Fabio Dionigi
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Tobias Reier
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Zarina Pawolek
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Manuel Gliech
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Peter Strasser
- The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany.
| |
Collapse
|
17
|
Karlsson RKB, Cornell A. Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes. Chem Rev 2016; 116:2982-3028. [PMID: 26879761 DOI: 10.1021/acs.chemrev.5b00389] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlorine gas and sodium chlorate are two base chemicals produced through electrolysis of sodium chloride brine which find uses in many areas of industrial chemistry. Although the industrial production of these chemicals started over 100 years ago, there are still factors that limit the energy efficiencies of the processes. This review focuses on the unwanted production of oxygen gas, which decreases the charge yield by up to 5%. Understanding the factors that control the rate of oxygen production requires understanding of both chemical reactions occurring in the electrolyte, as well as surface reactions occurring on the anodes. The dominant anode material used in chlorate and chlor-alkali production is the dimensionally stable anode (DSA), Ti coated by a mixed oxide of RuO2 and TiO2. Although the selectivity for chlorine evolution on DSA is high, the fundamental reasons for this high selectivity are just now becoming elucidated. This review summarizes the research, since the early 1900s until today, concerning the selectivity between chlorine and oxygen evolution in chlorate and chlor-alkali production. It covers experimental as well as theoretical studies and highlights the relationships between process conditions, electrolyte composition, the material properties of the anode, and the selectivity for oxygen formation.
Collapse
Affiliation(s)
- Rasmus K B Karlsson
- Applied Electrochemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| | - Ann Cornell
- Applied Electrochemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden
| |
Collapse
|
18
|
In situ growth of RuO2–TiO2 catalyst with flower-like morphologies on the Ti substrate as a binder-free integrated anode for chlorine evolution. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-0934-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
|
20
|
Effect of calcination temperature and molar ratio of tin and manganese on capacitance of Ti/SnO2–Sb–Mn/β-PbO2 electrode during phenol electro-oxidation. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Exner KS, Anton J, Jacob T, Over H. Ligand Effects and Their Impact on Electrocatalytic Processes Exemplified with the Oxygen Evolution Reaction (OER) on RuO2(110). ChemElectroChem 2015. [DOI: 10.1002/celc.201402430] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|