1
|
Shen T, Xiao D, Deng Z, Wang S, An L, Song M, Zhang Q, Zhao T, Gong M, Wang D. Stabilizing Diluted Active Sites of Ultrasmall High-Entropy Intermetallics for Efficient Formic Acid Electrooxidation. Angew Chem Int Ed Engl 2024; 63:e202403260. [PMID: 38503695 DOI: 10.1002/anie.202403260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
The poisoning of undesired intermediates or impurities greatly hinders the catalytic performances of noble metal-based catalysts. Herein, high-entropy intermetallics i-(PtPdIrRu)2FeCu (HEI) are constructed to inhibit the strongly adsorbed carbon monoxide intermediates (CO*) during the formic acid oxidation reaction. As probed by multiple-scaled structural characterizations, HEI nanoparticles are featured with partially negative Pt oxidation states, diluted Pt/Pd/Ir/Ru atomic sites and ultrasmall average size less than 2 nm. Benefiting from the optimized structures, HEI nanoparticles deliver more than 10 times promotion in intrinsic activity than that of pure Pt, and well-enhanced mass activity/durability than that of ternary i-Pt2FeCu intermetallics counterpart. In situ infrared spectroscopy manifests that both bridge and top CO* are favored on pure Pt but limited on HEI. Further theoretical elaboration indicates that HEI displayed a much weaker binding of CO* on Pt sites and sluggish diffusion of CO* among different sites, in contrast to pure Pt that CO* bound more strongly and was easy to diffuse on larger Pt atomic ensembles. This work verifies that HEIs are promising catalysts via integrating the merits of intermetallics and high-entropy alloys.
Collapse
Affiliation(s)
- Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiping Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lulu An
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Min Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Fan X, Chen W, Xie L, Liu X, Ding Y, Zhang L, Tang M, Liao Y, Yang Q, Fu XZ, Luo S, Luo JL. Surface-Enriched Single-Bi-Atoms Tailoring of Pt Nanorings for Direct Methanol Fuel Cells with Ultralow-Pt-Loading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313179. [PMID: 38353598 DOI: 10.1002/adma.202313179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/23/2024] [Indexed: 02/23/2024]
Abstract
Single-atom decorating of Pt emerges as a highly effective strategy to boost catalytic properties, which can trigger the most Pt active sites while blocking the smallest number of Pt atoms. However, the rational design and creation of high-density single-atoms on Pt surface remain as a huge challenge. Herein, a customized synthesis of surface-enriched single-Bi-atoms tailored Pt nanorings (SE-Bi1/Pt NRs) toward methanol oxidation is reported, which is guided by the density functional theory (DFT) calculations suggesting that a relatively higher density of Bi species on Pt surface can ensure a CO-free pathway and accelerate the kinetics of *HCOOH formation. Decorating Pt NRs with dense single-Bi-atoms is achieved by starting from PtBi intermetallic nanoplates (NPs) with intrinsically isolated Bi atoms and subsequent etching and annealing treatments. The SE-Bi1/Pt NRs exhibit a mass activity of 23.77 A mg-1 Pt toward methanol oxidation in alkaline electrolyte, which is 2.2 and 12.8 times higher than those of Pt-Bi NRs and Pt/C, respectively. This excellent activity endows the SE-Bi1/Pt NRs with a high likelihood to be used as a practical anodic electrocatalyst for direct methanol fuel cells (DMFCs) with high power density of 85.3 mW cm-2 and ultralow Pt loading of 0.39 mg cm-2.
Collapse
Affiliation(s)
- Xiaokun Fan
- Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Wen Chen
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Lei Xie
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xianglong Liu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- School of Physics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Yutian Ding
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Long Zhang
- School of Physics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Min Tang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Yujia Liao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Qi Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Shuiping Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
3
|
Huang H, Guo X, Zhang C, Yang L, Jiang Q, He H, Amin MA, Alshahrani WA, Zhang J, Xu X, Yamauchi Y. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells. ACS NANO 2024; 18:10341-10373. [PMID: 38572836 DOI: 10.1021/acsnano.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xiangjie Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Ali Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Ning X, Zhan L, Zhou X, Luo J, Wang Y. In-situ Bi-modified Pt towards glycerol and formic acid electro-oxidation: Effects of catalyst structure and surface microenvironment on activity and selectivity. J Colloid Interface Sci 2024; 655:920-930. [PMID: 37979297 DOI: 10.1016/j.jcis.2023.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The performances of glycerol electro-oxidation reaction (GOR) and formic acid electro-oxidation reaction (FAOR) catalyzed by Pt catalyst were dramatically improved by adding Bi3+ into the reaction solution. The dynamic structure and microenvironment of in-situ Bi-modified Pt and their impact on the catalytic performances were revealed. A strong correlation was established between the Bi coverage of Pt-based catalysts and their resistance to CO poisoning and performance in GOR and FAOR. When Bi3+ increased to a certain amount, a Bi-shell containing hydroxides was formed on Pt surfaces except the formation of Pt-Bi ensemble. On Pt catalyst covered with 43.9 % Bi, the peak mass-specific activities of GOR and FAOR in forward scans were 4.2 and 34.7 times that of Pt/NCNTs, respectively. The peak electrochemical active surface area (ECSA)-specific activity of FAOR in forward scan for Pt with 52.6 % Bi coverage was 80.6 times that of Pt/NCNTs. The dehydrogenation process in FAOR and the 4-electron pathway in GOR were improved for Bi-modified Pt. The experimental results and DFT calculations indicated that the positively charged Bi and structure of Pt-Bi ensemble improved the adsorption and interaction of negatively charged intermediates, and the enhanced hydroxides facilitated the oxidation and removal of toxic intermediates, such as CO.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Liang Zhan
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Jin Luo
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| | - Yanli Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Material Chemistry in Guangdong General University, Lingnan Normal University, Zhanjiang 524048, China
| |
Collapse
|
5
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Ge M, Huang J, Tian Y, Zhou L, Li H, Zhang A, Zhu S, Zhu X, Li Q, Min Y, Xu Q, Yuan X. Electrodeposition-Assisted Crystal Growth Regulation of PdBi Clusters on Carbon Cloths for Ethanol Oxidation. Inorg Chem 2023; 62:15138-15147. [PMID: 37676812 DOI: 10.1021/acs.inorgchem.3c02190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Carbon-supported Pd-based clusters are one of the most promising anodic catalysts for ethanol oxidation reaction (EOR) due to their encouraging activity and practical applications. However, unclear growth mechanism of Pd-based clusters on the carbon-based materials has hindered their extensive applications. Herein, we first introduce multi-void spherical PdBi cluster/carbon cloth (PdBi/CC) composites by an electrodeposition routine. The growth mechanism of PdBi clusters on the CC supports has been systemically investigated by evaluating the selected samples and tuning their compositions, which involve the big difference in standard redox potential between Pd2+/Pd and Bi3+/Bi and easy adsorption of Bi3+ on the surface of Pd-rich seeds. Benefitting from the ensembles of many nanocrystal subunits, multi-void spherical PdBi clusters can present collective properties and novel functionalities. In addition, the outstanding characteristics of CC supports enable PdBi clusters with stable nanostructures. Thanks to the unique structure, Pd20Bi/CC catalysts manifest higher EOR activity and better stability compared to Pd/CC. Systematic characterizations and a series of CO poisoning tests further confirm that the dramatically enhanced EOR activity and stability can be attributed to the incorporation of Bi species and the strong coupling of the structure between PdBi clusters and CC supports.
Collapse
Affiliation(s)
- Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jialu Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yuan Tian
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Luozeng Zhou
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Aichuang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
7
|
Hu X, Xiao Z, Wang W, Bu L, An Z, Liu S, Pao CW, Zhan C, Hu Z, Yang Z, Wang Y, Huang X. Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis. J Am Chem Soc 2023. [PMID: 37289521 DOI: 10.1021/jacs.3c00262] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing platinum (Pt)-based formic acid oxidation reaction (FAOR) catalysts with high performance and high selectivity of direct dehydrogenation pathway for direct formic acid fuel cell (DFAFC) is desirable yet challenging. Herein, we report a new class of surface-uneven PtPbBi/PtBi core/shell nanoplates (PtPbBi/PtBi NPs) as the highly active and selective FAOR catalysts, even in the complicated membrane electrode assembly (MEA) medium. They can achieve unprecedented specific and mass activities of 25.1 mA cm-2 and 7.4 A mgPt-1 for FAOR, 156 and 62 times higher than those of commercial Pt/C, respectively, which is the highest for a FAOR catalyst by far. Simultaneously, they show highly weak adsorption of CO and high dehydrogenation pathway selectivity in the FAOR test. More importantly, the PtPbBi/PtBi NPs can reach the power density of 161.5 mW cm-2, along with a stable discharge performance (45.8% decay of power density at 0.4 V for 10 h), demonstrating great potential in a single DFAFC device. The in situ Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) results collectively reveal a local electron interaction between PtPbBi and PtBi. In addition, the high-tolerance PtBi shell can effectively inhibit the production/adsorption of CO, resulting in the complete presence of the dehydrogenation pathway for FAOR. This work demonstrates an efficient Pt-based FAOR catalyst with 100% direct reaction selectivity, which is of great significance for driving the commercialization of DFAFC.
Collapse
Affiliation(s)
- Xinrui Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengyi Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weizhen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Zhengchao An
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiwei Hu
- College of Chemistry, Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | | | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Luo W, Jiang Y, Wang M, Lu D, Sun X, Zhang H. Design strategies of Pt-based electrocatalysts and tolerance strategies in fuel cells: a review. RSC Adv 2023; 13:4803-4822. [PMID: 36760269 PMCID: PMC9903923 DOI: 10.1039/d2ra07644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.
Collapse
Affiliation(s)
- Wenlei Luo
- National Innovation Institute of Defense Technology, Academy of Military Science Beijing 100071 China
| | - Yitian Jiang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Mengwei Wang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Dan Lu
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Xiaohui Sun
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Huahui Zhang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| |
Collapse
|
9
|
Chen W, Luo S, Sun M, Tang M, Fan X, Cheng Y, Wu X, Liao Y, Huang B, Quan Z. Hexagonal PtBi Intermetallic Inlaid with Sub-Monolayer Pb Oxyhydroxide Boosts Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107803. [PMID: 35212141 DOI: 10.1002/smll.202107803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Engineering multicomponent nanocatalysts is effective to improve electrocatalysis in many applications, yet it remains a challenge in constructing well-defined multimetallic active sites at the atomic level. Herein, the surface inlay of sub-monolayer Pb oxyhydroxide onto hexagonal PtBi intermetallic nanoplates with intrinsically isolated Pt atoms to boost the methanol oxidation reaction (MOR) is reported. The well-defined PtBi@6.7%Pb nanocatalyst exhibits 4.0 and 7.4 times higher mass activity than PtBi nanoplates and commercial Pt/C catalyst toward MOR in the alkaline electrolyte at 30 °C. Meanwhile, it also achieves a record-high mass activity of 51.07 A mg-1 Pt at direct methanol fuel cells operation temperature of 60 °C. DFT calculations reveal that the introduction of Pb oxyhydroxide on the surface not only promotes the electron transfer efficiency but also suppresses the CO poisoning effect, and the efficient p-d coupling optimizes the electroactivity of PtBi@6.7%Pb nanoplates toward the MOR process with low reaction barriers. This work offers a nanoengineering strategy to effectively construct and modulate multimetallic nanocatalysts to improve the electroactivity toward the MOR in future research.
Collapse
Affiliation(s)
- Wen Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Shuiping Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Min Tang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Xiaokun Fan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Yu Cheng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Xiaoyu Wu
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Yujia Liao
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| |
Collapse
|
10
|
PtBi on carbon cloth as efficient flexible electrode for electro-oxidation of liquid fuels. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Huang J, Deng C, Liu Y, Han T, Ji F, Zhang Y, Lu H, Hua P, Zhang B, Qian T, Yuan X, Yang Y, Yao Y. Bifunctional effect of Bi(OH) 3 on the PdBi surface as interfacial Brønsted base enables ethanol electro-oxidization. J Colloid Interface Sci 2021; 611:327-335. [PMID: 34965487 DOI: 10.1016/j.jcis.2021.12.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023]
Abstract
Palladium (Pd) is supposed to be one of the most promising catalytic metals towards ethanol (C2H5OH) oxidation reaction (EOR). However, Pd electrocatalysts easily suffer from the poisoning of the intermediates (especially CO), resulting in the quick decay of EOR catalysis. Herein, inspired by the Brønsted-Lowry acid-base theory, a "attraction-repulsion" concept is proposed to guide the surface structure engineering toward EOR catalysts. Specifically, we induce Bi(OH)3 species as Brønsted base onto PdBi nanoplates to effectively repel the adsorption of CO intermediates. The PdBi-Bi(OH)3 nanoplates show an impressive mass activity of 4.46 A mgPd-1 during the EOR catalysis and keep excellent stability. Both the stability and enhanced performance are attributed by the interfacial Brønsted base Bi(OH)3 which can selectively attract and repel reactants and intermediates, as evidenced from in situ measurements and theoretical views.
Collapse
Affiliation(s)
- Jialu Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chengwei Deng
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Yue Liu
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tingting Han
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Feng Ji
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongbin Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Ping Hua
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Bowei Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
12
|
Yuan X, Min Y, Wu J, Xu L, Yue W. Optimized electrocatalytic performance of PtZn intermetallic nanoparticles for methanol oxidation by designing catalyst support and fine-tuning surface composition. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Guan J, Yang S, Liu T, Yu Y, Niu J, Zhang Z, Wang F. Intermetallic FePt@PtBi Core–Shell Nanoparticles for Oxygen Reduction Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jingyu Guan
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Shaoxuan Yang
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Tongtong Liu
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yihuan Yu
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jin Niu
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
14
|
Lee H, Kim YJ, Sohn Y, Rhee CK. Pt Deposits on Bi-Modified Pt Electrodes of Nanoparticle and Disk: A Contrasting Behavior of Formic Acid Oxidation. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2021.00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This work presents a contrasting behavior of formic acid oxidation (FAO) on the Pt and Bi deposits on different Pt substrates. Using irreversible adsorption method, Bi and Pt were sequentially deposited on Pt electrodes of nanoparticle (Pt NP) and disk (Pt disk). The deposited layers of Bi and Pt on the Pt substrates were characterized with X-ray photoelectron spectroscopy, transmission microscopy and scanning tunneling microscopy. The electrochemical behaviors and FAO enhancements of Pt NP and Pt disk with deposited Bi only (i.e., Bi/Pt NP and Bi/Pt disk), were similar to each other. However, additional deposition of Pt on Bi/Pt NP and Bi/Pt disk (i.e., Pt/Bi/Pt NP and Pt/Bi/Pt disk) changed the electrochemical behavior and FAO activity in different ways depending on the shapes of the Pt substrates. With Pt/Bi/Pt NP, the hydrogen adsorption was suppressed and the surface oxidation of Pt was enhanced; while with Pt/Bi/Pt disk, the opposite behavior was observed. This difference was interpreted as a stronger interaction between the deposited Bi and Pt on Pt NP than that on Pt disk. The FAO performance on Pt/Bi/Pt NP is much better than that on Pt/Bi/Pt disk, most likely due to the difference in the interaction between the deposited Pt and Bi depending on the shapes of Pt substrates. In designing FAO electrochemical catalysts using Pt and Bi, the shape of a Pt substrate was concluded to be critically considered.
Collapse
|
15
|
PT-BI Co-Deposit Shell on AU Nanoparticle Core: High Performance and Long Durability for Formic Acid Oxidation. Catalysts 2021. [DOI: 10.3390/catal11091049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work presents the catalysts of Pt-Bi shells on Au nanoparticle cores and Pt overlayers on the Pt-Bi shells toward formic acid oxidation (FAO). Pt and Bi were co-deposited on Au nanoparticles (Au NP) via the irreversible adsorption method using a mixed precursor solution of Pt and Bi ions, and the amount of the co-deposits was controlled with the repetition of the deposition cycle. Rinsing of the co-adsorbed ionic layers of Pt and Bi with a H2SO4 solution selectively removed the Bi ions to leave Pt-rich and Bi-lean (<0.4 atomic %) co-deposits on Au NP (Pt-Bi/Au NP), conceptually similar to de-alloying. Additional Pt was deposited over Pt-Bi/Au NPs (Pt/Pt-Bi/Au NPs) to manipulate further the physicochemical properties of Pt-Bi/Au NPs. Transmission electron microscopy revealed the core–shell structures of Pt-Bi/Au NPs and Pt/Pt-Bi/Au NPs, whose shell thickness ranged from roughly four to six atomic layers. Moreover, the low crystallinity of the Pt-containing shells was confirmed with X-ray diffraction. Electrochemical studies showed that the surfaces of Pt-Bi/Au NPs were characterized by low hydrogen adsorption abilities, which increased after the deposition of additional Pt. Durability tests were carried out with 1000 voltammetric cycles between −0.26 and 0.4 V (versus Ag/AgCl) in a solution of 1.0 M HCOOH + 0.1 M H2SO4. The initial averaged FAO performance on Pt-Bi/Au NPs and Pt/Pt-Bi/Au NPs (0.11 ± 0.01 A/mg, normalized to the catalyst weight) was higher than that of a commercial Pt nanoparticle catalyst (Pt NP, 0.023 A/mg) by a factor of ~5, mainly due to enhancement of dehydrogenation and suppression of dehydration. The catalytic activity of Pt/Pt-Bi/Au NP (0.04 ± 0.01 A/mg) in the 1000th cycle was greater than that of Pt-Bi/Au NP (0.026 ± 0.003 A/mg) and that of Pt NP (0.006 A/mg). The reason for the higher durability was suggested to be the low mobility of surface Pt atoms on the investigated catalysts.
Collapse
|
16
|
Guan J, Yang S, Liu T, Yu Y, Niu J, Zhang Z, Wang F. Intermetallic FePt@PtBi Core-Shell Nanoparticles for Oxygen Reduction Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:21899-21904. [PMID: 34331724 DOI: 10.1002/anie.202107437] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 01/19/2023]
Abstract
The development of active and stable platinum (Pt)-based oxygen reduction reaction (ORR) electrocatalysts with good resistance to poisoning is a prerequisite for widespread practical application of fuel cells. An effective strategy for enhancing the electrocatalytic performance is to tune or control the physicochemical state of the Pt surface. Herein, we show a general surface-engineering approach to prepare a range of nanostructured Pt alloys by coating with alloy PtBi shells. FePt@PtBi core-shell nanoparticles showed the best ORR performance with a mass activity of 0.96 A mgPt -1 and a specific activity of 2.06 mA cm-2 , respectively 7 times and 11 times those of the corresponding values for benchmark Pt/C. Moreover, FePt@PtBi shows much better tolerance to methanol and carbon monoxide than conventional Pt-based electrocatalysts. The observed comprehensive enhancement in ORR performance of FePt@PtBi can be attributed to the increased compressive strain of the Pt surface due to in-plane shearing resulting from the presence of the large Bi atoms in the surface-structured PtBi overlayers, as well as charge displacement via Pt-Bi bonding which mitigates crossover issues.
Collapse
Affiliation(s)
- Jingyu Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shaoxuan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tongtong Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yihuan Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jin Niu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
17
|
He Z, Ning X, Yang G, Wang H, Cao Y, Peng F, Yu H. Selective oxidation of glycerol over supported noble metal catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Xie L, Liang J, Priest C, Wang T, Ding D, Wu G, Li Q. Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO 2 reduction. Chem Commun (Camb) 2021; 57:1839-1854. [PMID: 33527108 DOI: 10.1039/d0cc07589b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) to form highly valued chemicals is a sustainable solution to address the environmental issues caused by excessive CO2 emissions. Generally, it is challenging to achieve high efficiency and selectivity simultaneously in the CO2RR due to multi-proton/electron transfer processes and complex reaction intermediates. Among the studied formulations, bimetallic catalysts have attracted significant attention with promising activity, selectivity, and stability. Engineering the atomic arrangement of bimetallic nanocatalysts is a promising strategy for the rational design of structures (intermetallic, core/shell, and phase-separated structures) to improve catalytic performance. This review summarizes the recent advances, challenges, and opportunities in developing bimetallic catalysts for the CO2RR. In particular, we firstly introduce the possible reaction pathways on bimetallic catalysts concerning the geometric and electronic properties of intermetallic, core/shell, and phase-separated structures at the atomic level. Then, we critically examine recent advances in crystalline structure engineering for bimetallic catalysts, aiming to establish the correlations between structures and catalytic properties. Finally, we provide a perspective on future research directions, emphasizing current challenges and opportunities.
Collapse
Affiliation(s)
- Linfeng Xie
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiashun Liang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Cameron Priest
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. and Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Dong Ding
- Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Qing Li
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
19
|
Li X, You H, Wang C, Liu D, Yu R, Guo S, Wang Y, Du Y. 3D Taraxacum-like porous Pd nanocages with Bi doping: High-performance non-Pt electrocatalysts for ethanol oxidation reaction. J Colloid Interface Sci 2021; 591:203-210. [PMID: 33609892 DOI: 10.1016/j.jcis.2021.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Modifying the electronic structure and optimizing the geometric structure can expeditiously tune the electrocatalytic properties of catalysts, resulting in considerably enhanced electrocatalytic performance towards electrocatalytic oxidation of liquid fuels. We herein report a simple synthetic strategy to prepare Bi-doped 3D taraxacum-like Pd nanocages (NCs) composed of porous nanosheets, which possess high surface areas and strong synergistic effects. Notably, a trace of Bi diffuses into the lattice of Pd and increases the electronic effects of the surface of Pd, endowing PdBi-0.5 NCs/C with superior electrocatalytic performance towards ethanol oxidation reaction (EOR). The mass activity and specific activity of PdBi-0.5 NCs/C were 3494.8 mA mgPd-1 and 10.37 mA cm-2, being 4.08- and 4.82- fold enhancements as compared with commercial Pd/C, respectively. Moreover, the highly open porous 3D nanocages structure with rich active sites and defects can also facilitate the mass/electron transfer to favor the EOR kinetics.
Collapse
Affiliation(s)
- Xingchi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
20
|
Yang Y, Tan C, Yang Y, Zhang L, Zhang B, Wu K, Zhao S. Pt
3
Co@Pt Core@shell Nanoparticles as Efficient Oxygen Reduction Electrocatalysts in Direct Methanol Fuel Cell. ChemCatChem 2021. [DOI: 10.1002/cctc.202001868] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongchao Yang
- School of Chemical and Biomolecular Engineering The University of Sydney ydney, New South Wales 2006 Australia
| | - Chunhui Tan
- School of Chemical and Biomolecular Engineering The University of Sydney ydney, New South Wales 2006 Australia
| | - Yuwei Yang
- School of Chemical and Biomolecular Engineering The University of Sydney ydney, New South Wales 2006 Australia
| | - Lei Zhang
- Institute for Superconducting and Electronic Materials Australian Institute of Innovative Materials University of Wollongong North Wollongong, New South Wales 2500 Australia
| | - Bin‐Wei Zhang
- Institute for Superconducting and Electronic Materials Australian Institute of Innovative Materials University of Wollongong North Wollongong, New South Wales 2500 Australia
| | - Kuang‐Hsu Wu
- School of Chemical Engineering The University of New South Wales Sydney, New South Wales 2052 Australia
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering The University of Sydney ydney, New South Wales 2006 Australia
| |
Collapse
|
21
|
Zhu Z, Liu F, Fan J, Li Q, Min Y, Xu Q. C2 Alcohol Oxidation Boosted by Trimetallic PtPbBi Hexagonal Nanoplates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52731-52740. [PMID: 33169980 DOI: 10.1021/acsami.0c16215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exploration of ternary Pt-based catalysts represents a new trend for the application of electrocatalysts in fuel cells. In the present study, intermetallic PtPbBi hexagonal nanoplates (HNPs) with a hexagonal close-packed structure have been successfully synthesized via a facile solvothermal synthesis approach. The optimized PtPbBi HNPs exhibited excellent mass activity in the ethanol oxidation reaction (8870 mA mg-1Pt) in an alkaline ethanol solution, which is 12.7 times higher than that of JM Pt/C. Meanwhile, the mass activity of PtPbBi HNPs in an ethylene glycol solution (10,225 mA mg-1Pt) is 1.85 times higher than that of JM Pt/C. In particular, its catalytic activity is better than that of most reported Pt-based catalysts. In addition, the optimized PtPbBi HNPs also show a better operational durability than commercial Pt/C. For the ethylene glycol oxidation reaction, a mass activity of 42.7% was retained even after a chronoamperometric test for 3600 s, which is rare among the reported Pt-based catalysts. By combining X-ray photoelectron spectroscopy and electrochemical characterization, we reveal the electron transfer between Pt, Pb, and Bi; this would lead to weakened CO adsorption and enhanced OH adsorption, thereby promoting the removal of toxic intermediates and ensuring that PtPbBi HNP samples have high activity and excellent stability. This work can inspire the design and synthesis of Pt-based nanocatalysts.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
| | - Feng Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering Shanghai University of Electric Power, Yangpu District, 2588 Changyang Road, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, China
| |
Collapse
|
22
|
Lee H, Kim YJ, Sohn Y, Rhee CK. Co-deposits of Pt and Bi on Au disk toward formic acid oxidation. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04794-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Shen T, Chen S, Zeng R, Gong M, Zhao T, Lu Y, Liu X, Xiao D, Yang Y, Hu J, Wang D, Xin HL, Abruña HD. Tailoring the Antipoisoning Performance of Pd for Formic Acid Electrooxidation via an Ordered PdBi Intermetallic. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01537] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, P. R. China
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yun Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xupo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yao Yang
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Lee H, Sohn Y, Rhee CK. Pt Deposits on Bi/Pt NP Catalyst for Formic Acid Oxidation: Catalytic Enhancement and Longer Lifetime. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5359-5368. [PMID: 32321248 DOI: 10.1021/acs.langmuir.0c00755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This work presents an improvement in the activity and catalytic lifetime of Pt deposits on Bi-modified Pt nanoparticles (Bi/Pt NP) toward formic acid oxidation (FAO). Using an irreversible adsorption method, Bi was deposited on Pt NP to form Bi/Pt NP and sequentially Pt was deposited on Bi/Pt NP to form Pt/Bi/Pt NP. Voltammetric studies of Pt NP, Bi/Pt NP, and Pt/Bi/Pt NPs supported that Pt deposits of Pt/Bi/Pt NPs provided quite a unique behavior: simultaneous surface oxidation of deposited Pt and Bi and significant resistance to the oxidative removal of Bi. Furthermore, combined spectroscopic investigations revealed that the concentration of the employed Pt precursor ion solution determined the amount of deposited Pt from ∼0.2 to ∼0.4 in coverage. The best Pt/Bi/Pt NP catalyst with a Pt coverage of ∼0.25 enhanced the dehydrogenation processes below ∼0.4 V by a factor of more than 2 and increased the FAO current at ∼0.8 V roughly by 15 times, referring to those of Bi/Pt NP. The lifetime measurement works revealed that after the 1000th voltammetric cycle to 0.4 V, the FAO currents of Pt/Bi/Pt NPs were 2 and 4 times higher than those of Bi/Pt NP and Pt NP, respectively. The Pt deposits on Bi/Pt NP were concluded to play two roles in FAO: the promotion of FAO processes to increase the activity and the retardation of Bi oxidative removal to maintain the activity much longer.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngku Sohn
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Choong Kyun Rhee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
25
|
Wang C, Yu Z, Li G, Song Q, Li G, Luo C, Yin S, Lu B, Xiao C, Xu B, Zhou Z, Tian N, Sun S. Intermetallic PtBi Nanoplates with High Catalytic Activity towards Electro‐oxidation of Formic Acid and Glycerol. ChemElectroChem 2020. [DOI: 10.1002/celc.201901818] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chang‐Yi Wang
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Zhi‐Yuan Yu
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Gen Li
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Qian‐Tong Song
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Guang Li
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Chen‐Xu Luo
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Shu‐Hu Yin
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Bang‐An Lu
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Chi Xiao
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Bin‐Bin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Zhi‐You Zhou
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| | - Shi‐Gang Sun
- State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P.R. China
| |
Collapse
|
26
|
Romero Hernández A, Arce Estrada E, Ezeta A, Manríquez M. Formic acid oxidation on AuPd core-shell electrocatalysts: Effect of surface electronic structure. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Ning X, Zhou X, Luo J, Ma L, Xu X, Zhan L. Glycerol and formic acid electro-oxidation over Pt on S-doped carbon nanotubes: Effect of carbon support and synthesis method on the metal-support interaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Ning X, Zhou X, Luo J, Ma L, Xu X, Zhan L. Effects of the Synthesis Method and Promoter Content on Bismuth‐Modified Platinum Catalysts in the Electro‐oxidation of Glycerol and Formic Acid. ChemElectroChem 2019. [DOI: 10.1002/celc.201900043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering Key laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education InstitutesLingnan Normal University Zhanjiang 524048 China
| | - Xiaosong Zhou
- School of Chemistry and Chemical Engineering Key laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education InstitutesLingnan Normal University Zhanjiang 524048 China
| | - Jin Luo
- School of Chemistry and Chemical Engineering Key laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education InstitutesLingnan Normal University Zhanjiang 524048 China
| | - Lin Ma
- School of Chemistry and Chemical Engineering Key laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education InstitutesLingnan Normal University Zhanjiang 524048 China
| | - Xuyao Xu
- School of Chemistry and Chemical Engineering Key laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education InstitutesLingnan Normal University Zhanjiang 524048 China
| | - Liang Zhan
- School of Chemistry and Chemical Engineering Key laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education InstitutesLingnan Normal University Zhanjiang 524048 China
| |
Collapse
|
29
|
Affiliation(s)
- Leonard Rößner
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
30
|
Xiao W, Lei W, Gong M, Xin HL, Wang D. Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04420] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Weiping Xiao
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wen Lei
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mingxing Gong
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huolin L. Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Deli Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
31
|
Ning X, Zhan L, Wang H, Yu H, Peng F. Deactivation and regeneration of in situ formed bismuth-promoted platinum catalyst for the selective oxidation of glycerol to dihydroxyacetone. NEW J CHEM 2018. [DOI: 10.1039/c8nj04513e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycerol oxidation over a Pt catalyst can be effectively enhanced by a Bi additive in terms of activity and 1,3-dihydroxyacetone (DHA) selectivity.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering
- Lingnan Normal University
- Zhanjiang 524048
- China
| | - Liang Zhan
- School of Chemistry and Chemical Engineering
- Lingnan Normal University
- Zhanjiang 524048
- China
| | - Hongjuan Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Hao Yu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Feng Peng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
32
|
Zhang X, Tian S, Yu W, Lu B, Shen T, Xu L, Sun D, Zhang S, Tang Y. Nanotube-shaped PtFe intermetallics: controlled synthesis, crystal structure, and improved electrocatalytic activities. CrystEngComm 2018. [DOI: 10.1039/c8ce00601f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanotube-shaped PtFe intermetallics synthesized over charged β-FeOOH by self-assembly and careful heat treatment exhibit higher Pt activities toward methanol electro-oxidation.
Collapse
Affiliation(s)
- Xuebin Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Shujun Tian
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Wenjing Yu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Bingqing Lu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Tianyang Shen
- College of Material Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Shoulin Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| |
Collapse
|
33
|
El-Nagar GA, Hassan MA, Lauermann I, Roth C. Efficient Direct Formic Acid Fuel Cells (DFAFCs) Anode Derived from Seafood waste: Migration Mechanism. Sci Rep 2017; 7:17818. [PMID: 29259210 PMCID: PMC5736546 DOI: 10.1038/s41598-017-17978-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022] Open
Abstract
Commercial Pt/C anodes of direct formic acid fuel cells (DFAFCs) get rapidly poisoned by in-situ generated CO intermediates from formic acid non-faradaic dissociation. We succeeded in increasing the Pt nanoparticles (PtNPs) stability and activity for formic acid oxidation (DFAFCs anodic reaction) by embedding them inside a chitosan matrix obtained from seafood wastes. Atop the commercial Pt/C, formic acid (FA) is predominantly oxidized via the undesired poisoning dehydration pathway (14 times higher than the desired dehydrogenation route), wherein FA is non-faradaically dissociated to CO resulting in deactivation of the majority of the Pt active-surface sites. Surprisingly, PtNPs chemical insertion inside a chitosan matrix enhanced their efficiency for FA oxidation significantly, as demonstrated by their 27 times higher stability along with ~400 mV negative shift of the FA oxidation onset potential together with 270 times higher CO poisoning-tolerance compared to that of the commercial Pt/C. These substantial performance enhancements are believed to originate from the interaction of chitosan functionalities (e.g., NH2 and OH) with both PtNPs and FA molecules improving FA adsorption and preventing the PtNPs aggregation, besides providing the required oxygen helping with the oxidative removal of the adsorbed poisoning CO-like species at low potentials. Additionally, chitosan induced the retrieval of the Pt surface-active sites by capturing the in-situ formed poisoning CO intermediates via a so-called “migration mechanism”.
Collapse
Affiliation(s)
- Gumaa A El-Nagar
- Chemistry Department, Faculty of Science, Cairo University, 12613, Cairo, Egypt. .,Institute for Chemistry and Biochemistry, FU Berlin, Takustr. 3, D-14195, Berlin, Germany.
| | - Mohamed A Hassan
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center, Giza, Egypt
| | - Iver Lauermann
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Christina Roth
- Institute for Chemistry and Biochemistry, FU Berlin, Takustr. 3, D-14195, Berlin, Germany
| |
Collapse
|
34
|
|
35
|
The study of platinum-tellurium intermetallic nanoparticles for formic acid electro-oxidation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Dealloyed platinum-copper with isolated Pt atom surface: Facile synthesis and promoted dehydrogenation pathway of formic acid electro-oxidation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Lan M, Zhang B, Cheng H, Li X, Wu Q, Ying Z, Zhu Y, Li Y, Meng X, Zhao F. Chemoselective hydrogenation of 3-nitrostyrene to 3-aminostyrene over Pt-Bi/TiO 2 catalysts. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2016.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Yang Y, Yin H, He M, Pan D. In-situ Synthesizing and Optimizing the Surface Structure of Nanoporous PtBi Electrocatalysts for Formic Acid Electro-oxidation. ChemistrySelect 2017. [DOI: 10.1002/slct.201601731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanfei Yang
- School of Mechanical Engineering; University of Shanghai for Science and Technology; Shanghai 200093 China dpan@usst
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; Shanghai 200093 China
| | - Huiming Yin
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Institute for New Energy Materials and Low Carbon Technologies; Tianjin University of Technology; Tianjin 300384 China
| | - Meifeng He
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; Shanghai 200093 China
| | - Deng Pan
- School of Mechanical Engineering; University of Shanghai for Science and Technology; Shanghai 200093 China dpan@usst
| |
Collapse
|
39
|
Yoo JK, Rhee CK. Formic acid oxidation on Bi-modified Pt surfaces: Pt deposits on Au versus bulk Pt. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|