1
|
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park SJ. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. BIOSENSORS 2022; 12:bios12111004. [PMID: 36421123 PMCID: PMC9688744 DOI: 10.3390/bios12111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
| | | | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| |
Collapse
|
2
|
Mohammadpour-Haratbar A, Mazinani S, Sharif F, Bazargan AM. Improving Nonenzymatic Biosensing Performance of Electrospun Carbon Nanofibers decorated with Ni/Co Particles via Oxidation. Appl Biochem Biotechnol 2022; 194:2542-2564. [PMID: 35171465 DOI: 10.1007/s12010-022-03833-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Nonenzymatic biosensors do not require enzyme immobilization nor face degradation problem. Hence, nonenzymatic biosensors have recently attracted growing attention due to the stability and reproducibility. Here, a comparative study was conducted to quantitatively evaluate the glucose sensing of pure/oxidized Ni, Co, and their bimetal nanostructures grown on electrospun carbon nanofibers (ECNFs) to provide a low-cost free-standing electrode. The prepared nanostructures exhibited sensitivity (from 66.28 to 610.6 μA mM-1 cm-2), linear range of 2-10 mM, limit of detection in the range of 1 mM, and the response time (< 5 s), besides outstanding selectivity and applicability for glucose detection in the human serum. Moreover, the oxidizable interfering species, such as ascorbic acid (AA), uric acid (UA), and dopamine (DA), did not cause interference. Co-C and Ni-C phase diagrams, solid-state diffusion phenomena, and rearrangement of dissolved C atoms after migration from metal particles were discussed. This study undoubtedly provides new prospects on the nonenzymatic biosensing performance of mono-metal, bimetal, and oxide compounds of Ni and Co elements, which could be quite helpful for the fabrication of biomolecules detecting devices.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box, 15875-4413, Tehran, Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, 15875- 4413, Tehran, Iran.
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box, 15875-4413, Tehran, Iran
| | - Ali Mohammad Bazargan
- New Technologies Research Center (NTRC), Amirkabir University of Technology, 15875- 4413, Tehran, Iran
| |
Collapse
|
3
|
Cheng H, Zhou Z, Liu T. Electro-spinning fabrication of nitrogen, phosphorus co-doped porous carbon nanofiber as an electro-chemiluminescent sensor for the determination of cyproheptadine. RSC Adv 2020; 10:23091-23096. [PMID: 35520302 PMCID: PMC9054637 DOI: 10.1039/d0ra02115f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
Nitrogen, phosphorus co-doped porous carbon nanofiber (N, P-PCNF) is prepared by electrospinning the mixed solution of polyacrylonitrile (PAN), polyvinylpyrrolidone (PVP) and phosphoric acid followed by carbonization. The N, P-PCNF as a modified electrode material is directly used to fabricate an electro-chemiluminescent sensor for determination of cyproheptadine, and owing to the large specific area, more active sites and promotion of electron transfer, the sensor exhibits high electro-catalytic activity, high sensitivity, a good linear relationship ranging from 1.0 × 10-7 to 1.0 × 10-5 mol L-1 and a low detection limit (2.89 × 10-8 mol L-1). In addition, the good recoveries indicate that the sensor is a promising device for the detection of cyproheptadine in real samples.
Collapse
Affiliation(s)
- Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology Liuzhou 545006 Guangxi P. R. China
| | - Zhengyuan Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology Liuzhou 545006 Guangxi P. R. China
| | - Tao Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
4
|
A novel non-enzymatic glucose electrochemical sensor based on CNF@Ni-Co layered double hydroxide modified glassy carbon electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Gold nanoparticle prepared by electrochemical deposition for electrochemical determination of gabapentin as an antiepileptic drug. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Xi L, Wang T, Zhang D. Embedment of Well Dispersed Nickel Nanoparticles in Sulfonate and Benzimidazole Functionalized Poly (Arylene Ether Ketone) Film for the Electrocatalytic Oxidation of Glucose. ELECTROANAL 2017. [DOI: 10.1002/elan.201700413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lingling Xi
- Department of Chemistry, Xixi Campus; Zhejiang University; Hangzhou 310028 China
| | - Tengfei Wang
- Department of Chemistry, Xixi Campus; Zhejiang University; Hangzhou 310028 China
| | - Danwei Zhang
- Department of Chemistry, Xixi Campus; Zhejiang University; Hangzhou 310028 China
| |
Collapse
|
7
|
Smart Nanocomposites of Cu-Hemin Metal-Organic Frameworks for Electrochemical Glucose Biosensing. Sci Rep 2016; 6:36637. [PMID: 27811998 PMCID: PMC5095656 DOI: 10.1038/srep36637] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Herein, a smart porous material, Cu-hemin metal-organic-frameworks (Cu-hemin MOFs), was synthesized via assembling of Cu2+ with hemin to load glucose oxidase (GOD) for electrochemical glucose biosensing for the first time. The formation of the Cu-hemin MOFs was verified by scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, N2 adsorption/desorption isotherms, UV-vis absorption spectroscopy, fluorescence spectroscopy, thermal analysis and electrochemical techniques. The results indicated that the Cu-hemin MOFs showed a ball-flower-like hollow cage structure with a large specific surface area and a large number of mesopores. A large number of GOD molecules could be successfully loaded in the pores of Cu-hemin MOFs to keep their bioactivity just like in a solution. The GOD/Cu-hemin MOFs exhibited both good performance toward oxygen reduction reaction via Cu-hemin MOFs and catalytic oxidation of glucose via GOD, superior to other GOD/MOFs and GOD/nanomaterials. Accordingly, the performance of GOD/Cu-hemin MOFs-based electrochemical glucose sensor was enhanced greatly, showing a wide linear range from 9.10 μM to 36.0 mM and a low detection limit of 2.73 μM. Moreover, the sensor showed satisfactory results in detection of glucose in human serum. This work provides a practical design of new electrochemical sensing platform based on MOFs and biomolecules.
Collapse
|
8
|
Hu W, Sun DW, Pu H, Pan T. Recent Developments in Methods and Techniques for Rapid Monitoring of Sugar Metabolism in Fruits. Compr Rev Food Sci Food Saf 2016; 15:1067-1079. [DOI: 10.1111/1541-4337.12225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Weihong Hu
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 P. R. China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Center; South China Univ. of Technology; Guangzhou 510006 P. R. China
| | - Da-Wen Sun
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 P. R. China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Center; South China Univ. of Technology; Guangzhou 510006 P. R. China
- Food Refrigeration and Computerized Food Technology, Univ. College Dublin, Agriculture and Food Science Centre; Natl. Univ. of Ireland; Belfield Dublin 4 Ireland
| | - Hongbin Pu
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 P. R. China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Center; South China Univ. of Technology; Guangzhou 510006 P. R. China
| | - Tingtiao Pan
- School of Food Science and Engineering; South China Univ. of Technology; Guangzhou 510641 P. R. China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Center; South China Univ. of Technology; Guangzhou 510006 P. R. China
| |
Collapse
|
9
|
Karikalan N, Velmurugan M, Chen SM, Karuppiah C. Modern Approach to the Synthesis of Ni(OH)2 Decorated Sulfur Doped Carbon Nanoparticles for the Nonenzymatic Glucose Sensor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22545-53. [PMID: 27519122 DOI: 10.1021/acsami.6b07260] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As a growing aspect of materials science, there are an enormous number of synthesis routes that have been identified to produce materials, particularly through simple methodologies. In this way, the present study focuses on the easiest way to prepare sulfur doped carbon nanoparticles (SDCNs) using a flame synthesis method and has also demonstrated a novel route to synthesize Ni(OH)2 decorated SDCNs by a simple adsorption cum precipitation method. The SDCNs are alternative candidates to prestigious carbon materials such as graphene, carbon nanotubes, and fullerenes. Moreover, SDCNs provide excellent support to the Ni(2+) ion adsorption and initiate the formation of Ni(OH)2. The formation of Ni(OH)2 on the SDCN matrix was confirmed by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), selected area diffraction pattern (SAED), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). After these meticulous structural evaluations, we have described the mechanism for the formation of Ni(OH)2 on an SDCN matrix. The as-prepared Ni(OH)2 decorated SDCN nanocomposites were used as an electrode material for nonenzymatic glucose sensors. The fabricated glucose sensor exhibited a wide linear concentration range, 0.0001-5.22 mM and 5.22-10.22 mM, and a low-level detection limit of 28 nM. Additionally, it reveals excellent selectivity in the potentially interfering ions and also possesses a good stability. The practicality of the fabricated glucose sensor was also demonstrated toward glucose detection in biological samples.
Collapse
Affiliation(s)
- Natarajan Karikalan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Murugan Velmurugan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Chelladurai Karuppiah
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
- Department of Chemistry, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan, Republic of China
| |
Collapse
|
10
|
Voltammetric determination of paracetamol using a glassy carbon electrode modified with Prussian Blue and a molecularly imprinted polymer, and ratiometric read-out of two signals. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1926-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Yang Y, Wang Y, Bao X, Li H. Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamol. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1763-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Brahman PK, Suresh L, Lokesh V, Nizamuddin S. Fabrication of highly sensitive and selective nanocomposite film based on CuNPs/fullerene-C60/MWCNTs: An electrochemical nanosensor for trace recognition of paracetamol. Anal Chim Acta 2016; 917:107-16. [PMID: 27026607 DOI: 10.1016/j.aca.2016.02.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 11/17/2022]
Abstract
Designing an electrochemical sensor for versatile clinical applications is a sophisticated task and how dedicatedly functionalized composite materials can perform on this stage is a challenge for today and tomorrow's Nanoscience and Nanotechnology. In the present work, we demonstrate a new strategy for the development of novel electrochemical sensor based on catalytic nanocomposite film. Fullerene-C60 and multi-walled carbon nanotubes (MWCNTs) were dropped on the pre-treated carbon paste electrode (CPE) and copper nanoparticles (CuNPs) electrochemically deposited on the modified CPE to form nanocomposite film of CuNPs/C60/MWCNTs/CPE. In this work, an electrochemical method based on square wave voltammetry (SWV) employing CuNPs/C60/MWCNTs/CPE has been presented for the recognition and determination of paracetamol (PT). Developed electrochemical sensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronocoulometry. The composite film made the fabricated sensor to display high sensitivity and good selectivity for PT detection. The influence of the optimization parameters such as pH, accumulation time, deposition potential, scan rate and effect of loading of composite mixture of C60-MWCNTs and CuNPs on the electrochemical performance of the sensor were evaluated. A linear range from 4.0 × 10(-9) to 4.0 × 10(-7) M for PT detection was obtained with a detection limit of 7.3 × 10(-11) M. The fabricated sensor was successfully applied to the detection of PT in biological samples with good recovery ranging from 99.21 to 103%.
Collapse
Affiliation(s)
- Pradeep Kumar Brahman
- Electroanalytical Lab, Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur, A.P. 522502, India.
| | - Lakkavarapu Suresh
- Electroanalytical Lab, Department of Chemistry, K L University, Green Fields, Vaddeswaram, Guntur, A.P. 522502, India; Department of Biotechnology, K L University, Green Fields, Vaddeswaram, Guntur, A.P. 522502, India
| | - Veeramacheneni Lokesh
- Department of Electronics and Communication Engineering, K L University, Green Fields, Vaddeswaram, Guntur, A.P. 522502, India
| | - Syed Nizamuddin
- Department of Biotechnology, K L University, Green Fields, Vaddeswaram, Guntur, A.P. 522502, India
| |
Collapse
|
14
|
Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS NANO 2016; 10:46-80. [PMID: 26579616 DOI: 10.1021/acsnano.5b05690] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Varun Vij
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - K Christian Kemp
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| |
Collapse
|
15
|
Both Engel A, Bechelany M, Fontaine O, Cherifi A, Cornu D, Tingry S. One-Pot Route to Gold Nanoparticles Embedded in Electrospun Carbon Fibers as an Efficient Catalyst Material for Hybrid Alkaline Glucose Biofuel Cells. ChemElectroChem 2016. [DOI: 10.1002/celc.201500537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adriana Both Engel
- Institut Européen des Membranes; UMR 5635; Place Eugène Bataillon, CC 047 34095 Montpellier, Cedex 5 France
| | - Mikhael Bechelany
- Institut Européen des Membranes; UMR 5635; Place Eugène Bataillon, CC 047 34095 Montpellier, Cedex 5 France
| | - Olivier Fontaine
- Institut Charles Gerhardt Montpellier; Equipe Chimie Moléculaire et Organisation du Solide; UMR 5253, UM ENSCM CNRS; Place Eugène Bataillon, CC 1701 34095 Montpellier, Cedex 5 France
| | - Aziz Cherifi
- Institut Européen des Membranes; UMR 5635; Place Eugène Bataillon, CC 047 34095 Montpellier, Cedex 5 France
| | - David Cornu
- Institut Européen des Membranes; UMR 5635; Place Eugène Bataillon, CC 047 34095 Montpellier, Cedex 5 France
| | - Sophie Tingry
- Institut Européen des Membranes; UMR 5635; Place Eugène Bataillon, CC 047 34095 Montpellier, Cedex 5 France
| |
Collapse
|
16
|
Mao X, Tian W, Hatton TA, Rutledge GC. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications. Anal Bioanal Chem 2015; 408:1307-26. [DOI: 10.1007/s00216-015-9209-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 01/20/2023]
|
17
|
Luo X, Zhang Z, Wan Q, Wu K, Yang N. Lithium-doped NiO nanofibers for non-enzymatic glucose sensing. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Li Y, Zhang M, Zhang X, Xie G, Su Z, Wei G. Nanoporous Carbon Nanofibers Decorated with Platinum Nanoparticles for Non-Enzymatic Electrochemical Sensing of H₂O₂. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:1891-1905. [PMID: 28347102 PMCID: PMC5304789 DOI: 10.3390/nano5041891] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/25/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
We describe the preparation of nanoporous carbon nanofibers (CNFs) decorated with platinum nanoparticles (PtNPs) in this work by electrospining polyacrylonitrile (PAN) nanofibers and subsequent carbonization and binding of PtNPs. The fabricated nanoporous CNF-PtNP hybrids were further utilized to modify glass carbon electrodes and used for the non-enzymatic amperometric biosensor for the highly sensitive detection of hydrogen peroxide (H₂O₂). The morphologies of the fabricated nanoporous CNF-PtNP hybrids were observed by scanning electron microscopy, transmission electron microscopy, and their structure was further investigated with Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectrum. The cyclic voltammetry experiments indicate that CNF-PtNP modified electrodes have high electrocatalytic activity toward H₂O₂ and the chronoamperometry measurements illustrate that the fabricated biosensor has a high sensitivity for detecting H₂O₂. We anticipate that the strategies utilized in this work will not only guide the further design and fabrication of functional nanofiber-based biomaterials and nanodevices, but also extend the potential applications in energy storage, cytology, and tissue engineering.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Mingfa Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaopeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guocheng Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Wei
- Hybrid Materials Interface Group, Faculty of Production Engineering, University of Bremen, Bremen D-28359, Germany.
| |
Collapse
|