1
|
Milne SA, Lasserre P, Corrigan DK. Fabrication of a graphite-paraffin carbon paste electrode and demonstration of its use in electrochemical detection strategies. Analyst 2024; 149:4736-4746. [PMID: 39114971 DOI: 10.1039/d4an00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Electrochemical detection methods hold many advantages over their optical counterparts, such as operation in complex sample matrices, low-cost and high volume manufacture and possible equipment miniaturisation. Despite these advantages, the use of electrochemical detection is currently limited in the clinical setting. There is a wide range of potential electrode materials, selected for optimal signal-to-noise ratios and reproducibility when detecting target analytes. The use of carbon paste electrodes (CPEs) for electrochemical detection can be limited by their analytical performance, however they remain very attractive due to their low cost and biocompatibility. This paper presents the fabrication of an easy-to-make and use graphite powder/paraffin wax paste combined with a substrate produced via additive manufacturing and confirms its functionality for both direct and indirect electrochemical measurements. The produced CPEs enable the direct voltammetric detection of hexaammineruthenium(III) chloride and dopamine at an experimental limit of detection (ELoD) of 62.5 μM. The key inflammatory biomarker Interleukin-6 through an enzyme-linked immunosorbant assay (ELISA) was also quantified, yielding a clinically-relevant ELoD of 150 pg ml-1 in 10% human serum. The performance of low-cost and easy-to-use CPEs obtained in 0.5 hours is showcased in this study, demonstrating the platform's potential uses for point-of-need electroanalytical applications.
Collapse
Affiliation(s)
- Stuart A Milne
- University of Strathclyde, Biomedical Engineering, Wolfson Centre, 106 Richmond St, Glasgow G1 1XQ, UK.
| | - Perrine Lasserre
- University of Strathclyde, Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral St, Glasgow G1 1XL, UK
| | - Damion K Corrigan
- University of Strathclyde, Pure and Applied Chemistry, Thomas Graham Building, 295 Cathedral St, Glasgow G1 1XL, UK
| |
Collapse
|
2
|
Ghosh D, Tabassum R, Sarkar PP, Rahman MA, Jalal AH, Islam N, Ashraf A. Graphene Nanocomposite Ink Coated Laser Transformed Flexible Electrodes for Selective Dopamine Detection and Immunosensing. ACS APPLIED BIO MATERIALS 2024; 7:3143-3153. [PMID: 38662615 DOI: 10.1021/acsabm.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Novel and flexible disposable laser-induced graphene (LIG) sensors modified with graphene conductive inks have been developed for dopamine and interleukin-6 (IL-6) detection. The LIG sensors exhibit high reproducibility (relative standard deviation, RSD = 0.76%, N = 5) and stability (RSD = 4.39%, N = 15) after multiple bendings, making the sensors ideal for wearable and stretchable bioelectronics applications. We have developed electrode coatings based on graphene conductive inks, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (G-PEDOT:PSS) and polyaniline (G-PANI), for working electrode modification to improve the sensitivity and limit of detection (LOD). The selectivity of LIG sensors modified with the G-PANI ink is 41.47 times higher than that of the screen-printed electrode with the G-PANI ink modification. We have compared our fabricated bare laser-engraved Kapton sensor (LIG) with the LIG sensors modified with G-PEDOT (LIG/G-PEDOT) and G-PANI (LIG/G-PANI) conductive inks. We have further compared the performance of the fabricated electrodes with commercially available screen-printed electrodes (SPEs) and screen-printed electrodes modified with G-PEDOT:PSS (SPE/G-PEDOT:PSS) and G-PANI (SPE/G-PANI). SPE/G-PANI has a lower LOD of 0.632 μM compared to SPE/G-PEDOT:PSS (0.867 μM) and SPE/G-PANI (1.974 μM). The lowest LOD of the LIG/G-PANI sensor (0.4084 μM, S/N = 3) suggests that it can be a great alternative to measure dopamine levels in a physiological medium. Additionally, the LIG/G-PANI electrode has excellent LOD (2.6234 pg/mL) to detect IL-6. Also, the sensor is successfully able to detect ascorbic acid (AA), dopamine (DA), and uric acid (UA) in their ternary mixture. The differential pulse voltammetry (DPV) result shows peak potential separation of 229, 294, and 523 mV for AA-DA, DA-UA, and UA-AA, respectively.
Collapse
Affiliation(s)
- Dipannita Ghosh
- Oregon State University, Corvallis, Oregon 97331, United States
| | - Ridma Tabassum
- The University of Texas at Rio Grande Valley, ESCNE 2.515, Edinburg, Texas 78539, United States
| | - Pritu Parna Sarkar
- The University of Texas at Rio Grande Valley, ESCNE 2.515, Edinburg, Texas 78539, United States
| | | | - Ahmed Hasnain Jalal
- Department of Electrical and Computer Engineering, The University of Texas at Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Nazmul Islam
- Department of Electrical and Computer Engineering, The University of Texas at Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Ali Ashraf
- The University of Texas at Rio Grande Valley, Edinburg, Texas 78539, United States
| |
Collapse
|
3
|
Kamaha Tchekep AG, Suryanarayanan V, Pattanayak DK. New insight into interference-free and highly sensitive dopamine electroanalysis. Anal Chim Acta 2024; 1291:342234. [PMID: 38280788 DOI: 10.1016/j.aca.2024.342234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Early diagnosis of Parkinson's disease and hyperprolactinemia based on electrochemical dopamine (DA) sensing appears as an efficient and promising practical diagnostic method. However, the coexistence of DA in real samples with ascorbic acid (AA) and uric acid (UA), which oxidize at potentials close to its own, prevents the accurate electrochemical DA sensing and therefore, hinders the effective diagnosis of these diseases. In this work, we successfully combined the electrostatic proprieties of GO, the electron transfer properties of an AuNPs@MWCNTs nanocomposite and the ability of thiol group of the amino acid l-cysteine to react chemically with carbonyl groups of UA, to develop a novel approach that enabled complete suppression of interference from AA and UA and hence, accurate DA electroanalysis in the conditions close to those of human blood serum. The chemical reaction between l-cysteine and UA was evidenced by monitoring the DPV responses of UA under different conditions. XRD, Raman spectroscopy, XPS and FE-SEM revealed the successful synthesis of GO and AuNPs@MWCNTs. The study of the electrode material (GO-AuNPs@MWCNTs) morphology via FE-SEM and HR-TEM showed that AuNPs@MWCNTs are distributed throughout the exfoliated GO layers. The fabricated sensor was calibrated in the concentration range of 0.5-5 μM, in the presence of the highest blood concentrations of AA and UA for healthy individuals. A linear relationship was observed and the LOD was found to be 1.31 nM (S/N = 3). Furthermore, the sensor showed good electron transfer kinetics, good repeatability and reproducibility, satisfactory long-term stability, and recoveries in human blood serum.
Collapse
Affiliation(s)
- A G Kamaha Tchekep
- Electrochemical Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - V Suryanarayanan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Electro Organic & Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India
| | - Deepak K Pattanayak
- Electrochemical Process Engineering Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Antibacterial Enhancement of High-Efficiency Particulate Air Filters Modified with Graphene-Silver Hybrid Material. Microorganisms 2023; 11:microorganisms11030745. [PMID: 36985318 PMCID: PMC10059912 DOI: 10.3390/microorganisms11030745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Bacterial infections are a major concern as antibiotic resistance poses a great threat, therefore leading to a race against time into finding new drugs or improving the existing resources. Nanomaterials with high surface area and bactericidal properties are the most promising ones that help combating microbial infections. In our case, graphene decorated with silver nanoparticles Gr-Ag (5 wt% Ag) exhibited inhibitory capacity against S. aureus and E. coli. The newly formed hybrid material was next incubated with high-efficiency particulate air (HEPA) filter, to obtain one with bactericidal properties. The modified filter had greater inhibitory action against the tested strains, compared to the control, and the effect was better against the Gram-negative model. Even if the bacteria remained attached to the filters, their colony forming unit capacity was affected by the Gr-Ag (5 wt% Ag) hybrid material, when they were subsequently re-cultured on fresh agar media. Therefore, the HEPA filter modified with Gr-Ag (5 wt% Ag) has high antibacterial properties that may substantially improve the existing technology.
Collapse
|
5
|
Corrosion behaviour of zinc coated with composite silica layers incorporating poly(amidoamine)-modified graphene oxide. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Kumara JKS, Swamy BEK, Jayaprakash GK, Sharma SC, Flores.-Moreno R, Mohanty K, Hariprasad SA. Effect of TX-100 pretreatment on carbon paste electrode for selective sensing of dopamine in presence of paracetamol. Sci Rep 2022; 12:20292. [PMID: 36434033 PMCID: PMC9700772 DOI: 10.1038/s41598-022-24387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Dopamine (DA) is one of the chief neurotransmitters present in the central nervous system of mammals. Therefore detection of DA in presence of various analytes like paracetamol has great importance. In the current work, we are proposing that Triton X-100 (TX-100) pretreated carbon paste electrode (CPE) can be useful to detect the DA selectively in presence of PA. After the pretreatment CPE can detect DA in presence of PA effectively. Cyclic voltammetry was employed to observe the amplified electron transfer reaction between the modified CPE and DA. To understand electron transfer regioselectivity at the TX-100 pretreated CPE, a dual descriptor was used. The prepared electrode showed satisfactory stability when kept under ambient conditions. The proposed approach also showed excellent analytical applicability to identify DA and PA in commercial formulations. The scope of the work is limited to detecting DA in presence of PA. We will consider the other interferes for future works.
Collapse
Affiliation(s)
- J. K. Shashi Kumara
- grid.440695.a0000 0004 0501 6546Department of P.G. Studies and Research in Industrial Chemistry, JnanaSahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451 India
| | - B. E. Kumara Swamy
- grid.440695.a0000 0004 0501 6546Department of P.G. Studies and Research in Industrial Chemistry, JnanaSahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451 India
| | - G. K. Jayaprakash
- grid.444321.40000 0004 0501 2828Department of Chemistry, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka 560064 India
| | - S. C. Sharma
- grid.449351.e0000 0004 1769 1282National Assessment and Accreditation Council (Work Carried Out As Honorary Professor), Jain University, Bangalore, Karnataka 560 069 India ,grid.417972.e0000 0001 1887 8311School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Roberto Flores.-Moreno
- grid.441421.60000 0004 0384 6642Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad Guadalajara, Blvd. Marcelino Garcı´a Barraga´N 1421, C.P. 44430 Guadalajara, Jal. Mexico
| | - Kaustubha Mohanty
- grid.417972.e0000 0001 1887 8311Department of Chemical Engineering, Indian lnstitute of Technology Guwahati, Guwahati, 781039 India
| | - S. A. Hariprasad
- grid.449351.e0000 0004 1769 1282Jain University, Bangalore, Karnataka 560 069 India
| |
Collapse
|
7
|
Charlton van der Horst, Vernon Somerset. Nanoparticles Application in the Determination of Uric Acid, Ascorbic Acid, and Dopamine. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s102319352205010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Lin SY, Lin CY. Electrochemically-functionalized CNT/ABTS nanozyme enabling sensitive and selective voltammetric detection of microalbuminuria. Anal Chim Acta 2022; 1197:339517. [DOI: 10.1016/j.aca.2022.339517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/01/2022]
|
9
|
Baig N, Kawde AN, Elgamouz A, Morsy M, Abdelfattah AM, Othaman R. Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine. RSC Adv 2022; 12:2057-2067. [PMID: 35425276 PMCID: PMC8979215 DOI: 10.1039/d1ra08464j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
An ultra-sensitive sensor of dopamine is introduced. The sensor is constructed by encapsulating platinum nanoparticles (PtNPs) between reduced graphene oxide (GR) nanosheets. The sandwiched PtNPs between GR layers acted as a spacer to prevent aggregation and provided a fine connection between the GR nanosheets to provide fast charge transfer. This specific orientation of the GR nanosheets and PtNPs on the graphite pencil electrode (GPE) substantially improved the electrocatalytic activity of the sensor. The synthesized graphene oxide and the fabricated sensor were comprehensively characterized by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, field emission-scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and square wave voltammetry (SWV). The value of the charge transfer coefficient (α), apparent heterogeneous electron transfer rate constant (k s), and electroactive surface area for dopamine were found to be about 0.57, 8.99 s-1, and 0.81 cm2, respectively. The developed sensor is highly sensitive towards dopamine, and the detection limit is 9.0 nM. The sensor response is linear for dopamine concentration from 0.06 to 20 μM (R 2 = 0.9991). The behavior of the sensor for dopamine in the presence of a high concentration of l(+) Ascorbic acid and other potential interferents was satisfactory. High recovery percentage between 90% and 105% in the human urine sample, good reproducibility, and facile fabrication of the electrode make it a good candidate for dopamine sensing.
Collapse
Affiliation(s)
- Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Abdel-Nasser Kawde
- Department of Chemistry, College of Sciences, University of Sharjah P. O. Box 27272 United Arab Emirates
| | - Abdelaziz Elgamouz
- Department of Chemistry, College of Sciences, University of Sharjah P. O. Box 27272 United Arab Emirates
| | - Mohamed Morsy
- Chemistry Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Ahmed Mohsen Abdelfattah
- Department of Architecture, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Rizafizah Othaman
- Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi Selangor 43600 Malaysia
| |
Collapse
|
10
|
Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Patella B, Sortino A, Mazzara F, Aiello G, Drago G, Torino C, Vilasi A, O'Riordan A, Inguanta R. Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs based electrodes. Anal Chim Acta 2021; 1187:339124. [PMID: 34753568 DOI: 10.1016/j.aca.2021.339124] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]
Abstract
Dopamine is an important neurotransmitter involved in many human biological processes as well as in different neurodegenerative diseases. Monitoring the concentration of dopamine in biological fluids, i.e., blood and urine is an effective way of accelerating the early diagnosis of these types of diseases. Electrochemical sensors are an ideal choice for real-time screening of dopamine as they can achieve fast, portable inexpensive and accurate measurements. In this work, we present electrochemical dopamine sensors based on reduced graphene oxide coupled with Au or Pt nanoparticles. Sensors were developed by co-electrodeposition onto a flexible substrate, and a systematic investigation concerning the electrodeposition parameters (concentration of precursors, deposition time and potential) was carried out to maximize the sensitivity of the dopamine detection. Square wave voltammetry was used as an electrochemical technique that ensured a high sensitive detection in the nM range. The sensors were challenged against synthetic urine in order to simulate a real sample detection scenario where dopamine concentrations are usually lower than 600 nM. Our sensors show a negligible interference from uric and ascorbic acids which did not affect sensor performance. A wide linear range (0.1-20 μm for gold nanoparticles, 0.1-10 μm for platinum nanoparticles) with high sensitivity (6.02 and 7.19 μA μM-1 cm-2 for gold and platinum, respectively) and a low limit of detection (75 and 62 nM for Au and Pt, respectively) were achieved. Real urine samples were also assayed, where the concentrations of dopamine detected aligned very closely to measurements undertaken using conventional laboratory techniques. Sensor fabrication employed a cost-effective production process with the possibility of also being integrated into flexible substrates, thus allowing for the possible development of wearable sensing devices.
Collapse
Affiliation(s)
- Bernardo Patella
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Alessia Sortino
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Francesca Mazzara
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Giuseppe Aiello
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Giuseppe Drago
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Claudia Torino
- Istituto di Fisiologia Clinica (IFC)-Consiglio Nazionale Delle Ricerche-Reggio Calabria-Italy, Italy
| | - Antonio Vilasi
- Istituto di Fisiologia Clinica (IFC)-Consiglio Nazionale Delle Ricerche-Reggio Calabria-Italy, Italy
| | - Alan O'Riordan
- Nanotechnology Group, Tyndall National Institute, University College Cork, Dyke Prade, Cork, Ireland
| | | |
Collapse
|
12
|
Islam S, Shaheen Shah S, Naher S, Ali Ehsan M, Aziz MA, Ahammad AJS. Graphene and Carbon Nanotube-based Electrochemical Sensing Platforms for Dopamine. Chem Asian J 2021; 16:3516-3543. [PMID: 34487610 DOI: 10.1002/asia.202100898] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
13
|
Shang X, Weng Q, Wang F, Wang J, Huang S, Chen S, Han Z, Chen J. Non-enzymatic photoelectrochemical sensors based on Schiff base and chitosan co-decorated TiO2 nanosheets for dopamine detection. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Naik EI, Naik HB, Sarvajith M, Pradeepa E. Co-precipitation synthesis of cobalt doped ZnO nanoparticles: Characterization and their applications for biosensing and antibacterial studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Mazzara F, Patella B, Aiello G, O'Riordan A, Torino C, Vilasi A, Inguanta R. Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Poly (red DSBR)/Al-ZnO modified carbon paste electrode sensor for dopamine: a voltammetric study. Sci Rep 2021; 11:14310. [PMID: 34253794 PMCID: PMC8275598 DOI: 10.1038/s41598-021-93723-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
In the present work, the ZnO and Al-ZnO nanoflakes (NFs) were synthesized by the co-precipitation process. The synthesized NFs were characterized by X-ray diffraction and field emission scanning electron microscopy. Energy dispersive X-ray spectrometer was explored for the elemental chemical compositions. The prepared NFs were taken for the modification of the electrode and developed the modified electrode for the electrochemical analysis of the dopamine (DOA) at pH 7.4. The Al-ZnO modified carbon paste electrode (MCPE) was electropolymerised by using textile dye red DSBR. The Po-RD/Al-ZnO MCPE exhibited good electrochemical sensor properties towards the electrochemical detection of DOA. Several factors such as the impact of speed rate (υ), pH and concentration of the DOA were analyzed at the modified electrode. The great sensitivity was established to the fast electron-transfer kinetics and surface coverage of the DOA on the electrode. The prepared electrode exhibits satisfactory stability at the ambient conditions. The detection limit of 0.58 μM was achieved for the DOA. The decorated sensor was stable, sensitive, selective, and reproducible and used in the analytical applications.
Collapse
|
17
|
Shashikumara JK, Kalaburgi B, Swamy BEK, Nagabhushana H, Sharma SC, Lalitha P. Effect of RGO-Y 2O 3 and RGO-Y 2O 3:Cr 3+ nanocomposite sensor for dopamine. Sci Rep 2021; 11:9372. [PMID: 33931659 PMCID: PMC8087706 DOI: 10.1038/s41598-021-87749-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
The RGO-Y2O3 and RGO-Y2O3: Cr3+ (5 mol %) nanocomposite (NC) synthesized by hydrothermal technique. The structure and morphology of the synthesized NCs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Y2O3:Cr3+ displays spherical-shaped particles. Conversely, the surface of the RGO displays a wrinkly texture connecting with the existence of flexible and ultrathin graphene sheets. The photoluminescence (PL) emission spectra showed series of sharp peaks at 490, 591, and 687 nm which corresponding to 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, and 4F9/2 → 6H11/2 transitions and lies in the blue, orange, and red region. The prepared NCs were used for the preparation of modified carbon paste electrodes (MCPE) in the electrochemical detection of dopamine (DA) at pH 7.4. Both modified electrodes provide a good current response towards voltammetric detection of DA. Doping is an effective method to improve the conductivity of Y2O3:Cr3+ and developed a method for the sensor used in analytical applications.
Collapse
Affiliation(s)
- J K Shashikumara
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shimoga, Karnataka, 577451, India
| | - Bhimanagouda Kalaburgi
- Department of Studies and Research in Physics, Tumkur University, Tumkur, Karnataka, 572 103, India
| | - B E Kumara Swamy
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shimoga, Karnataka, 577451, India.
| | - H Nagabhushana
- Department of Studies and Research in Physics, Tumkur University, Tumkur, Karnataka, 572 103, India.
| | - S C Sharma
- National Assessment and Accreditation Council (Work Carried Out as Honorary Professor), Jain University, Bangalore, Karnataka, 560 069, India. .,Distinguished Professor in the Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, India.
| | - P Lalitha
- Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| |
Collapse
|
18
|
Influence of cationic surfactant cetyltrimethylammonium bromide for electrochemical detection of guanine, uric acid and dopamine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Cernat A, Ştefan G, Tertis M, Cristea C, Simon I. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry 2020; 136:107620. [DOI: 10.1016/j.bioelechem.2020.107620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
|
20
|
Wang S, Guo P, Ma G, Wei J, Wang Z, Cui L, Sun L, Wang A. Three-dimensional hierarchical mesoporous carbon for regenerative electrochemical dopamine sensor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
He W, Liu R, Zhou P, Liu Q, Cui T. Flexible micro-sensors with self-assembled graphene on a polyolefin substrate for dopamine detection. Biosens Bioelectron 2020; 167:112473. [DOI: 10.1016/j.bios.2020.112473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023]
|
22
|
Si Y, Zhang AY, Liu C, Pei DN, Yu HQ. Stable Electrochemical Determination of Dopamine by a Fluorine-Terminated {001}-Exposed TiO 2 Single Crystal Sensor. Anal Chem 2020; 92:9629-9639. [PMID: 32605362 DOI: 10.1021/acs.analchem.0c00845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photochemical oxidation is able to effectively regenerate the fouled electrode in electrochemical pollutant monitoring, while its regeneration capacity is limited by the surface-bound hydroxyl radical speciation with low activity and mobility, which is attributed to the dissociated water adsorption on hydrophilic metal oxides. In this work, fluorine-terminated {001}-exposed TiO2 single crystals (F-TiO2) are rationally designed to construct an Au-based electrochemical sensor (Au/F-TiO2) for dopamine (DA) detection in different matrices. The Au/F-TiO2 sensor exhibits an efficient and stable detection capacity in both environmental and biological samples. A superior photochemical regeneration capacity is obtained on the Au/F-TiO2 electrode with much reduced matrix effects under UV irradiation. Spectral observation, crystallographic analysis, pollutant degradation performance, radical inhibition, and surface enhanced Raman scattering tests reveal that both the fluorine-terminated surface chemical features and the bulk-free radical speciation are mainly responsible for the superior photochemical regeneration capacity of the Au/F-TiO2 electrode. Even for the real biological samples, a stable electrochemical DA detection is also achieved on the Au/F-TiO2 sensor. Our work establishes a new approach to refine electrochemical sensors for stable monitoring and provides a robust photoactive electrode substrate with high efficiency and low cost for practical applications.
Collapse
Affiliation(s)
- Yang Si
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ai-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.,Department of Municipal Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dan-Ni Pei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
23
|
Mohammadi S, Taher MA, Beitollahi H. Treated Screen Printed Electrodes Based on Electrochemically Reduced Graphene Nanoribbons for the Sensitive Voltammetric Determination of Dopamine in the Presence of Uric Acid. ELECTROANAL 2020. [DOI: 10.1002/elan.201900767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Somayeh Mohammadi
- Department of Chemistry Faculty of Science Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | - Mohammad Ali Taher
- Department of Chemistry Faculty of Science Shahid Bahonar University of Kerman Kerman 76175-133 Iran
| | - Hadi Beitollahi
- Environment Department Institute of Science and High Technology and Environmental Sciences Graduate University of Advanced Technology Kerman Iran
| |
Collapse
|
24
|
Shashikumara J, Kumara Swamy B, Sharma S. A simple sensing approach for the determination of dopamine by poly (Yellow PX4R) pencil graphite electrode. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cdc.2020.100366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Sensor based on redox conjugated poly(para-phenylene) for the simultaneous detection of dopamine, ascorbic acid, and uric acid in human serum sample. Anal Bioanal Chem 2020; 412:4433-4446. [DOI: 10.1007/s00216-020-02686-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
|
26
|
Shashikumara J, Swamy BK. Electrochemical investigation of dopamine in presence of Uric acid and ascorbic acid at poly (Reactive Blue) modified carbon paste electrode: A voltammetric study. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Simultaneous electrochemical detection of ascorbic acid and dopamine on Cu2O/CuO/electrochemically reduced graphene oxide (CuxO/ERGO)-nanocomposite-modified electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Kundys-Siedlecka M, Bączyńska E, Jönsson-Niedziółka M. Electrochemical Detection of Dopamine and Serotonin in the Presence of Interferences in a Rotating Droplet System. Anal Chem 2019; 91:10908-10913. [PMID: 31353889 DOI: 10.1021/acs.analchem.9b02967] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this Article, a rotating droplet system is used for simultaneous detection of dopamine and serotonin. Carbon nanoparticles functionalized with sulfonic groups on the electrode surface enables potential discrimination between the neurotransmitters and the most common interferences, whereas the efficient and low-volume hydrodynamic system helps to lower the detection limit toward physiologically relevant concentrations. Here, we present results with a 10 nM limit of detection for serotonin and a 100 nM to 2 μM linear response range from the system in a sample containing an equimolar concentrations of dopamine and serotonin and 0.5 mM concentration of both uric and ascorbic acids. Demonstrating the practical applicability of this method, we measure the concentration of serotonin in 70 μL of mice blood serum samples without additional pretreatment.
Collapse
Affiliation(s)
| | - Ewa Bączyńska
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52 , Warsaw 01-224 , Poland.,Nencki Institute of Experimental Biology, Polish Academy of Sciences , Pasteura 3 , Warsaw 02-093 , Poland
| | - Martin Jönsson-Niedziółka
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52 , Warsaw 01-224 , Poland
| |
Collapse
|
29
|
Fabrication of Au Nanoparticle-Decorated MoS2 Nanoslices as Efficient Electrocatalysts for Electrochemical Detection of Dopamine. Catalysts 2019. [DOI: 10.3390/catal9080653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herein, MoS2 nanoslices were simply prepared by using ultrasonic treatment, and were further decorated with Au nanoparticles (AuNPs) through an electrodeposition process to obtain the MoS2/Au nanocomposites. The obtained nanocomposites display synergetic electrocatalytic effect for the oxidation of dopamine due to the large surface area and two-dimensional structure of the MoS2 nanoslices, combining with the high catalytic activity and good conductivity of AuNPs. An electrochemical sensor was constructed based on MoS2/Au-modified carbon paste electrode, for sensitive and quantitative determination of dopamine. The prepared electrochemical sensor proves excellent analytical performances: very high sensitivity, wide linear ranges (0.5–300 μM), and low detection limit (76 nM). Moreover, the dopamine sensor also displays high selectivity, good reproducibility and stability, and can be used in real sample analysis. The method of fabricating high-efficiency electrocatalysts and electrochemical sensors proposed in this study provides a good reference for developing more functionalized nanocomposites and for extending practical applications.
Collapse
|
30
|
Gugoasa LA, Stefan-van Staden RI, van Staden JF, Coroș M, Pruneanu S. Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1620262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Livia Alexandra Gugoasa
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest-6, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest-6, Romania
| | - Jacobus Frederick van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest-6, Romania
| | - Maria Coroș
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Huang X, Shi W, Bao N, Yu C, Gu H. Electrochemically reduced graphene oxide and gold nanoparticles on an indium tin oxide electrode for voltammetric sensing of dopamine. Mikrochim Acta 2019; 186:310. [PMID: 31037355 DOI: 10.1007/s00604-019-3408-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/02/2019] [Indexed: 11/28/2022]
Abstract
The authors describe an electrochemical dopamine sensor that is based on the use of electrochemically co-reduced graphene oxide (Er-GO) and gold nanoparticles (AuNPs) on an indium-tin oxide (ITO) electrode. The synergistic effects of Er-GO and Er-AuNPs promote electron transport in the modified ITO. This results in an excellent performance for voltammetric sensing of dopamine (DA). Under the optimum conditions and a typical working potential of -0.05 V (vs. Ag/AgCl), the ITO electrode has a linear response in the 0.02-200 μM DA concentration range and a low detection limit of 15 nM. The sensor also showed a good selectivity over ascorbic acid and uric acid. The feasibility of the method was studied by analyzing DA in cerebrospinal fluid of rats. Graphical abstract Schematic presentation of one-step electrochemical co-reduction of graphene oxide (GO) and gold nanoparticles (AuNPs) on an ITO electrode for voltammetric sensing of dopamine.
Collapse
Affiliation(s)
- Xin Huang
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Weishan Shi
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China
| | - Chunmei Yu
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China.
| | - Haiying Gu
- School of Public Health, Nantong University, Nantong, 226019, People's Republic of China.
| |
Collapse
|
32
|
Anancia Grace A, Divya KP, Dharuman V, Hahn JH. Single step sol-gel synthesized Mn2O3-TiO2 decorated graphene for the rapid and selective ultra sensitive electrochemical sensing of dopamine. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Tyrosinase/Chitosan/Reduced Graphene Oxide Modified Screen-Printed Carbon Electrode for Sensitive and Interference-Free Detection of Dopamine. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tyrosinase, chitosan, and reduced graphene oxide (rGO) are sequentially used to modify a screen-printed carbon electrode (SPCE) for the detection of dopamine (DA), without interference from uric acid (UA) or ascorbic acid (AA). The use of tyrosinase significantly improves the detection’s specificity. Cyclic voltammetry (CV) measurements demonstrate the high sensitivity and selectivity of the proposed electrochemical sensors, with detection limits of 22 nM and broad linear ranges of 0.4–8 μM and 40–500 μM. The fabricated tyrosinase/chitosan/rGO/SPCE electrodes achieve satisfactory results when applied to human urine samples, thereby demonstrating their feasibility for analyzing DA in physiological samples.
Collapse
|
34
|
An electrochemical biosensor for sensitive detection of nicotine-induced dopamine secreted by PC12 cells. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Electrochemical reduced graphene oxide-poly(eriochrome black T)/gold nanoparticles modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2018.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
37
|
Ganash AA, Alqarni SA, Hussein MA. Poly(aniline-co-o-anisidine)/graphene oxide Au nanocomposites for dopamine electrochemical sensing application. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1260-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Aziz A, Asif M, Azeem M, Ashraf G, Wang Z, Xiao F, Liu H. Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal Chim Acta 2018; 1047:197-207. [PMID: 30567650 DOI: 10.1016/j.aca.2018.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
Abstract
This study introduces a new strategy for periodic stacking of positively charged NiAl layered double hydroxides (LDHs) nanosheets with negatively charged monolayers of graphene (G) by systematically optimizing several parameters in a controlled co-feeding fashion and resultant heterostacked NiAl LDH/G LBL nanocomposites have been practically applied in sensitive detection of dopamine released from live cells as early Parkinson's disease (PD) diagnostic tool. PD is the second most chronic neurodegenerative disorder with gradual progressive loss of movement and muscle control causing substantial disability and threatening the life seriously. Unfortunately majority of dopaminergic neurons present in substantia nigra of PD patients are destroyed before it is being clinically diagnosed, so early stages PD diagnosis is essential. Because of direct neighboring of extremely conductive graphene to semiconductive LDHs layers, enhanced intercalation capability of LDHs, and huge surface area with numerous active sites, good synergy effect is harvested in heteroassembled NiAl LDH/G LBL material, which in turn shows admirable electrocatalytic ability in DA detection. The interference induced by UA and AA is effectively eliminated especially after the modifying the electrode with Nafion. The outstanding electrochemical sensing performance of NiAl LDH/G LBL modified electrode has been achieved in terms of broad linear range and lowest real detection limit of 2 nM (S/N = 3) towards DA oxidation. Benefitting from superior efficiency, biosensor has been successfully used for real-time in-vitro tracking of DA efflux from live human nerve cell after being stimulated. We believe that our biosensing platform of structurally integrated well-ordered LBL heteroassembly by inserting graphene directly to the interlayer galleries of LDHs material will open up new avenue in diseases determination window.
Collapse
Affiliation(s)
- Ayesha Aziz
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Muhammad Asif
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Muhammad Azeem
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ghazala Ashraf
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengyun Wang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei Xiao
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongfang Liu
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
39
|
Wu X, Li P, Zhang Y, Yao D. Selective response of dopamine on 3-thienylphosphonic acid modified gold electrode with high antifouling capability and long-term stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:677-683. [PMID: 30423754 DOI: 10.1016/j.msec.2018.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 09/04/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022]
Abstract
In this work, an Au electrode modified with self-assembled monolayers (SAMs) of 3-thienylphosphonic acid (TPA) was used as a novel functional interface to selectively sense dopamine (DA) in the presence of excess ascorbic acid (AA). Ellipsometry, X-ray photoelectron spectroscopic (XPS) and electrochemical measurements proved the immobilization of TPA on the gold surface. Interestingly, the Au electrode modified with TPA substantially improved the antifouling and renewal capabilities towards the oxidation of dopamine (DA) after 15 days of storage in undeoxygenated phosphate buffer solution (PBS pH 7.4). Moreover, the TPA-SAMs modified Au electrode could afford a selective electrochemical response for the DA oxidation in the presence of ascorbic acid (AA). Based on this result, a high sensitive detection limit of 2.0 × 10-7 M for DA could be obtained in the presence of high concentration of AA.
Collapse
Affiliation(s)
- Xinchun Wu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Ping Li
- Jining Teachers College, Department of Chemistry, Wulanchabu 012000, China
| | - Yongfeng Zhang
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - De Yao
- Erdos Institute of Applied Technology, Erdos 017000, China.
| |
Collapse
|
40
|
Vulcu A, Biris AR, Borodi G, Berghian-Grosan C. Interference of ascorbic and uric acids on dopamine behavior at graphene composite surface: An electrochemical, spectroscopic and theoretical approach. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Mikrochim Acta 2018; 185:397. [DOI: 10.1007/s00604-018-2925-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/23/2018] [Indexed: 01/14/2023]
|
42
|
Gandouzi I, Tertis M, Cernat A, Bakhrouf A, Coros M, Pruneanu S, Cristea C. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Bioelectrochemistry 2018; 120:94-103. [DOI: 10.1016/j.bioelechem.2017.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
|
43
|
Zhang L, Zhang J. Multiporous molybdenum carbide nanosphere as a new charming electrode material for highly sensitive simultaneous detection of guanine and adenine. Biosens Bioelectron 2018; 110:218-224. [PMID: 29625329 DOI: 10.1016/j.bios.2018.03.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
By introduction of Mo metal species (molybdenum-based polyoxometalates) into the Cu-MOF as co-precursor, molybdenum carbide nanosphere (MoxC@C) was prepared via a simple calcining routine and a further etching the metallic Cu process. The obtained MoxC@C showed a unique structure where well-dispersed MoxC nanoparticles (NPs) were encapsulated in porous carbon matrix. As-fabricated novel 3D porous architecture MoxC@C nanosphere exhibited a potent and persistent electro-oxidation behavior followed by well-separated oxidation peaks (peak to peak voltage is about 350 mV) toward adenine (A) and guanine (G) by differential pulse voltammetry (DPV). This excellent electrochemical performance can be attributed to the unique structure and composition of 3D MoxC@C. Furthermore, 3D MoxC@C also revealed high selectivity and sensitivity, good reproducibility, excellent stability and anti-interference ability. The calibration curves for quantitive analysis of G and A were obtained: 0.03-122 µM, and 0.02-122 µM, respectively, the detection limits were 0.0085 µM, 0.008 µM, respectively. The proposed procedure was successfully applied to detect G and A in human urine and serum samples with satisfactory recovery, which manifests its viability application for practical analysis.
Collapse
Affiliation(s)
- Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| | - Jing Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| |
Collapse
|
44
|
$$\mathrm{NiFe}_{2}\mathrm{O}_{4 }$$ NiFe 2 O 4 nanoparticles-decorated activated carbon nanocomposite based electrochemical sensor for selective detection of dopamine in presence of uric acid and ascorbic acid. J CHEM SCI 2018. [DOI: 10.1007/s12039-017-1413-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Zhang L, Zhang J. 3D hierarchical bayberry-like Ni@carbon hollow nanosphere/rGO hybrid as a new interesting electrode material for simultaneous detection of small biomolecules. Talanta 2018; 178:608-615. [DOI: 10.1016/j.talanta.2017.09.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/21/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
|
46
|
Ghasemi N, Nezamzadeh-Ejhieh A. Study of the interactions of influencing parameters on electrocatalytic determination of dopamine by a carbon paste electrode based on Fe(ii)–clinoptilolite nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c7nj03579a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, after ion exchange of clinoptilolite nanoparticles (CLN) in Fe(ii) solution, the prepared Fe(ii)–CLN was used for the modification of a carbon paste electrode (CPE).
Collapse
Affiliation(s)
- Niloufar Ghasemi
- Department of Chemistry
- Shahreza Branch
- Islamic Azad University
- Isfahan
- Iran
| | | |
Collapse
|
47
|
Lee CS, Yu SH, Kim TH. One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 8:E17. [PMID: 29301209 PMCID: PMC5791104 DOI: 10.3390/nano8010017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/14/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
Abstract
Here, we introduce the preparation of the hybrid nanocomposite-modified electrode consisting of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) using the one-step electrochemical method, allowing for the simultaneous and individual detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). RGO/AuNPs nanocomposite was formed on a glassy carbon electrode by the co-reduction of GO and Au3+ using the potentiodynamic method. The RGO/AuNPs nanocomposite-modified electrode was produced by subjecting a mixed solution of GO and Au3+ to cyclic sweeping from -1.5 V to 0.8 V (vs. Ag/AgCl) at a scan rate 10 mV/s for 3 cycles. The modified electrode was characterized by scanning electron microscopy, Raman spectroscopy, contact angle measurement, electrochemical impedance spectroscopy, and cyclic voltammetry. Voltammetry results confirm that the RGO/AuNPs nanocomposite-modified electrode has high catalytic activity and good resolution for the detection of DA, AA, and UA. The RGO/AuNPs nanocomposite-modified electrode exhibits stable amperometric responses for DA, AA, and UA, respectively, and its detection limits were estimated to be 0.14, 9.5, and 25 μM. The modified electrode shows high selectivity towards the determination of DA, AA, or UA in the presence of potentially active bioelements. In addition, the resulting sensor exhibits many advantages such as fast amperometric response, excellent operational stability, and appropriate practicality.
Collapse
Affiliation(s)
- Chang-Seuk Lee
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea.
| | - Su Hwan Yu
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea.
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea.
| |
Collapse
|
48
|
Au-Pt bimetallic nanoparticles decorated on sulfonated nitrogen sulfur co-doped graphene for simultaneous determination of dopamine and uric acid. Talanta 2017; 178:315-323. [PMID: 29136829 DOI: 10.1016/j.talanta.2017.09.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 11/24/2022]
Abstract
In this work, a novel nanohybrid (AuPtNPs/S-NS-GR) of well-defined Au-Pt bimetallic nanoparticles (Au-PtNPs) decorated on sulfonated nitrogen sulfur co-doped graphene (S-NS-GR) was developed. Firstly, nitrogen sulfur co-doped graphene (NS-GR) was synthesized by one-step thermal annealing method. Secondly, phenyl SO3H- group was introduced onto the surface of NS-GR via diazotization reaction, which could provide more binding sites for the formation of metal nanoparticles. Finally, Au-Pt bimetallic nanoparticles were anchored on the surface of S-NS-GR by using electrochemical deposition. The prepared material was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and electrochemical impedance spectra (EIS). In addition, the electrocatalytic activity towards dopamine (DA) and uric acid (UA) was systematically studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Under optimum conditions, the linear ranges for the detection of DA and UA were 1.0×10-8 - 4.0×10-4 M and 1.0×10-6 - 1.0×10-3 M with the limits of detection (LOD, S/N = 3) of 0.006μM and 0.038μM, respectively. Furthermore, the modified electrode was applied to real sample analysis.
Collapse
|
49
|
Wang X, Gao D, Li M, Li H, Li C, Wu X, Yang B. CVD graphene as an electrochemical sensing platform for simultaneous detection of biomolecules. Sci Rep 2017; 7:7044. [PMID: 28765640 PMCID: PMC5539141 DOI: 10.1038/s41598-017-07646-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/30/2017] [Indexed: 11/29/2022] Open
Abstract
The development of electrochemical biosensors for the simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), tryptophan (Trp), and nitrite ([Formula: see text]) in human serum is reported in this work. Free-standing graphene nanosheets were fabricated on Ta wire using the chemical vapor deposition (CVD) method. CVD graphene, which here served as a sensing platform, provided a highly sensitive and selective option, with detection limits of AA, DA, UA, Trp, and [Formula: see text] of 1.58, 0.06, 0.09, 0.10, and 6.45 μM (S/N = 3), respectively. The high selectivity of the electrode is here explained by a relationship between the bandgap energy of analyte and the Fermi level of graphene. The high sensitivity in the oxidation current was determined by analyzing the influence of the high surface area and chemical structure of free-standing graphene nanosheets on analyte adsorption capacity. This finding strongly indicates that the CVD graphene electrode can be used as a biosensor to detect five analytes in human serum.
Collapse
Affiliation(s)
- Xiaodan Wang
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Delan Gao
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China.
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Xiaoguo Wu
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Baohe Yang
- Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| |
Collapse
|
50
|
Vijayaraghavan T, Sivasubramanian R, Hussain S, Ashok A. A Facile Synthesis of LaFeO3
-Based Perovskites and Their Application towards Sensing of Neurotransmitters. ChemistrySelect 2017. [DOI: 10.1002/slct.201700723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Anuradha Ashok
- PSG Institute of Advanced Studies; Coimbatore- 641004 India
| |
Collapse
|