1
|
Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Recent Developments in Sonochemical Synthesis of Nanoporous Materials. Molecules 2023; 28:molecules28062639. [PMID: 36985612 PMCID: PMC10051140 DOI: 10.3390/molecules28062639] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Ultrasounds are commonly used in medical imaging, solution homogenization, navigation, and ranging, but they are also a great energy source for chemical reactions. Sonochemistry uses ultrasounds and thus realizes one of the basic concepts of green chemistry, i.e., energy savings. Moreover, reduced reaction time, mostly using water as a solvent, and better product yields are among the many factors that make ultrasound-induced reactions greener than those performed under conventional conditions. Sonochemistry has been successfully implemented for the preparation of various materials; this review covers sonochemically synthesized nanoporous materials. For instance, sonochemical-assisted methods afforded ordered mesoporous silicas, spherical mesoporous silicas, periodic mesoporous organosilicas, various metal oxides, biomass-derived activated carbons, carbon nanotubes, diverse metal-organic frameworks, and covalent organic frameworks. Among these materials, highly porous samples have also been prepared, such as garlic peel-derived activated carbon with an apparent specific surface area of 3887 m2/g and MOF-177 with an SSA of 4898 m2/g. Additionally, many of them have been examined for practical usage in gas adsorption, water treatment, catalysis, and energy storage-related applications, yielding satisfactory results.
Collapse
Affiliation(s)
- Sylwia Głowniak
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (S.G.); (B.S.); (J.C.)
| | - Barbara Szczęśniak
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (S.G.); (B.S.); (J.C.)
| | - Jerzy Choma
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (S.G.); (B.S.); (J.C.)
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- Correspondence:
| |
Collapse
|
2
|
Reusable molecularly imprinted electrochemiluminescence assay for kanamycin based on ordered mesoporous carbon loaded with indium oxide nanoparticles and carbon quantum dots. Mikrochim Acta 2022; 189:431. [DOI: 10.1007/s00604-022-05527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
|
3
|
Zhao M, Zhao DL, Han XY, Yang HX, Duan YJ, Tian XM. Ge nanoparticles embedded in spherical ordered mesoporous carbon as anode material for high performance lithium ion batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Luo L, Qiao H, Xu W, Li D, Zhu J, Chen C, Lu Y, Zhu P, Zhang X, Wei Q. Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-016-3501-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
|