1
|
Rivera-Pousa A, Otero-Mato JM, Montes-Campos H, Méndez-Morales T, Diddens D, Heuer A, Varela LM. Ternary Solid Polymer Electrolytes at the Electrochemical Interface: A Computational Study. Macromolecules 2024; 57:3921-3936. [PMID: 38765500 PMCID: PMC11100289 DOI: 10.1021/acs.macromol.3c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Polymer-based solid-like gel electrolytes have emerged as a promising alternative to improve battery performance. However, there is a scarcity of studies on the behavior of these media at the electrochemical interface. In this work, we report classical MD simulations of ternary polymer electrolytes composed of poly(ethylene oxide), a lithium salt [lithium bis(trifluoromethanesulfonyl)imide], and different ionic liquids [1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] confined between two charged and uncharged graphene-like surfaces. The molecular solvation of Li+ ions and their diffusion as well as the polymer conformational picture were characterized in terms of the radial distribution functions, coordination numbers, number density profiles, orientations, displacement variance, polymer radius of gyration, and polymer end-to-end distance. Our results show that the layering behavior of the ternary electrolyte in the interfacial region leads to a decrease of Li+ mobility in the direction perpendicular to the electrodes and high energy barriers that hinder lithium cations from coming into direct contact with the graphene-like surface. The nature of the ionic liquid and its concentration were found to influence the structural and dynamic properties at the electrode/electrolyte interface, the electrolyte with low amounts of the pyrrolidinium-based ionic liquid being that with the best performance since it favors the migration of Li+ cations toward the negative electrode when compared to the imidazolium-based one.
Collapse
Affiliation(s)
- Alejandro Rivera-Pousa
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
| | - José Manuel Otero-Mato
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
| | - Hadrian Montes-Campos
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
- CIQUP,
Institute of Molecular Sciences (IMS)—Departamento de Química
e Bioquímica, Faculdade de Ciências
da Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Trinidad Méndez-Morales
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
| | - Diddo Diddens
- Helmholtz-Institute
Münster (HI MS), Ionics in Energy Storage, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
| | - Andreas Heuer
- Helmholtz-Institute
Münster (HI MS), Ionics in Energy Storage, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
- Institute
of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Luis Miguel Varela
- Grupo
de Nanomateriais, Fotónica e Materia Branda, Departamento de
Física de Partículas, Universidade
de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Instituto
de Materiais (iMATUS), Universidade de Santiago
de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Unge M, Gudla H, Zhang C, Brandell D. Electronic conductivity of polymer electrolytes: electronic charge transport properties of LiTFSI-doped PEO. Phys Chem Chem Phys 2020; 22:7680-7684. [PMID: 32242576 DOI: 10.1039/d0cp01130d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The electronic structure of poly(ethyleneoxide) with and without a common electrolyte lithium bis(trifluoromethane)sulfonimide salt is calculated from first principles. Introducing the salt into the polymer electrolyte significantly reduces the band gap, down to 0.6 eV. Thus, this will have a significant impact on the leakage currents in polymer electrolytes used in all-solid-state batteries.
Collapse
Affiliation(s)
- Mikael Unge
- ABB Corporate Research, SE 72178, Västerås, Sweden. and Department of Chemistry - Ångström Laboratory, Uppsala Universitet, SE 75121 Uppsala, Sweden
| | - Harish Gudla
- Department of Chemistry - Ångström Laboratory, Uppsala Universitet, SE 75121 Uppsala, Sweden
| | - Chao Zhang
- Department of Chemistry - Ångström Laboratory, Uppsala Universitet, SE 75121 Uppsala, Sweden
| | - Daniel Brandell
- Department of Chemistry - Ångström Laboratory, Uppsala Universitet, SE 75121 Uppsala, Sweden
| |
Collapse
|