1
|
Barry SCL, Franke C, Mulaudzi T, Pokpas K, Ajayi RF. Review on Surface-Modified Electrodes for the Enhanced Electrochemical Detection of Selective Serotonin Reuptake Inhibitors (SSRIs). MICROMACHINES 2023; 14:1334. [PMID: 37512646 PMCID: PMC10386609 DOI: 10.3390/mi14071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Selective serotonin re-uptake inhibitors (SSRIs) are one of the most commonly prescribed classes of antidepressants used for the treatment of moderate to severe depressive disorder, personality disorders and various phobias. This class of antidepressants was created with improved margins of safety. However, genetic polymorphism may be responsible for the high variability in patients' responses to treatment, ranging from failure to delayed therapeutic responses to severe adverse effects of treatment. It is crucial that the appropriate amount of SSRI drugs is administered to ensure the optimum therapeutic efficacy and intervention to minimise severe and toxic effects in patients, which may be the result of accidental and deliberate cases of poisoning. Determining SSRI concentration in human fluids and the environment with high sensitivity, specificity and reproducibility, and at a low cost and real-time monitoring, is imperative. Electrochemical sensors with advanced functional materials have drawn the attention of researchers as a result of these advantages over conventional techniques. This review article aims to present functional materials such as polymers, carbon nanomaterials, metal nanomaterials as well as composites for surface modification of electrodes for sensitive detection and quantification of SSRIs, including fluoxetine, citalopram, paroxetine, fluvoxamine and sertraline. Sensor fabrication, sensor/analyte interactions, design rationale and properties of functional material and the electrocatalytic effect of the modified electrode on SSRI detection are discussed.
Collapse
Affiliation(s)
- Simone C L Barry
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Candice Franke
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Takalani Mulaudzi
- Biotechnology Department, Life Sciences Building, University of the Western Cape, Bellville 7535, South Africa
| | - Keagan Pokpas
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Rachel Fanelwa Ajayi
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
2
|
Liu YJ, Bian Y, Zhang Y, Zhang YX, Ren A, Lin SH, Feng XS, Zhang XY. Diuretics in Different Samples: Update on the Pretreatment and Analysis Techniques. Crit Rev Anal Chem 2023:1-33. [PMID: 37130012 DOI: 10.1080/10408347.2023.2202260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diuretics are drugs that promote the excretion of water and electrolytes in the body and produce diuretic effects. Clinically, they are often used in the treatment of edema caused by various reasons and hypertension. In sports, diuretics are banned by the World Anti-Doping Agency (WADA). Therefore, in order to monitor blood drug concentration, identify drug quality and maintain the fairness of sports competition, accurate, rapid, highly selective and sensitive detection methods are essential. This review provides a comprehensive summary of the pretreatment and detection of diuretics in various samples since 2015. Commonly used techniques to extract diuretics include liquid-liquid extraction, liquid-phase microextraction, solid-phase extraction, solid-phase microextraction, among others. Determination methods include methods based on liquid chromatography, fluorescent spectroscopy, electrochemical sensor method, capillary electrophoresis and so on. The advantages and disadvantages of various pretreatment and analytical techniques are elaborated. In addition, future development prospects of these techniques are discussed.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ai Ren
- School of Pharmacy, China Medical University, Shenyang, China
| | - Shu-Han Lin
- School of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Sun Y. Research on Detection of Sterol Doping in Sports by Electrochemical Sensors: A Review. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:3394079. [PMID: 36117750 PMCID: PMC9477621 DOI: 10.1155/2022/3394079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The use of doping by athletes to improve performance is prohibited. Therefore, doping testing is an important step to ensure fairness in sports. Doping is gradually metabolized in the body and is therefore difficult to detect immediately by a common method. At the same time, the emergence of new doping agents poses a challenge for highly sensitive detection. Electrochemical sensors are a fast, highly sensitive, and inexpensive analytical detection technology. It provides qualitative and quantitative determination of analytes by altering the electrochemical signal of the analyte or probe at the electrode. In this min-review, we summarized the different electrochemical sensing strategies for sterol doping detection. Some of the representative papers were interpreted in detail. In addition, we compare different sensing strategies.
Collapse
Affiliation(s)
- Yunyan Sun
- Physical Education Department, Nanyang Institute of Technology, Nanyang, Henan 473000, China
| |
Collapse
|
4
|
Lotfy HM, El-Hanboushy S, Fayz YM, Abdelkawy M. Smart Spectrophotometric Methods for Concurrent Determination of Furosemide and Spironolactone Mixture in Their Pharmaceutical Dosage Forms. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Gupta P, Rahm CE, Griesmer B, Alvarez NT. Carbon Nanotube Microelectrode Set: Detection of Biomolecules to Heavy Metals. Anal Chem 2021; 93:7439-7448. [PMID: 33988989 DOI: 10.1021/acs.analchem.1c00360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An ultrasensitive electrochemical microelectrode set (μ-ES), where all three electrodes are made of highly densified carbon nanotube fiber (HD-CNTf) cross sections (length ∼40 μm), embedded in an inert polymer matrix, and exposed open-ended CNTs at the interface, is presented here. Bare open ends of HD-CNTf rods were used as the working (∼40 μm diameter) and counter (∼94 μm diameter) electrodes, while the cross section of a ∼94 μm diameter was electroplated with Ag/AgCl and coated with Nafion to employ as a quasi-reference electrode. The Ag/AgCl/Nafion-coated HD-CNTf rod quasi-reference electrode provided a very stable potential comparable to the commercial porous-junction Ag/AgCl reference electrode. The HD-CNTf rod μ-ES has been evaluated by electrochemical determination of biologically important analytes, i.e., dopamine (DA), β-nicotinamide adenine dinucleotide (NADH), a diuretic drug, i.e., furosemide, and a heavy metal, i.e., lead ions (Pb2+). Different voltammetric techniques were employed during the study, i.e., cyclic voltammetry (CV), square wave voltammetry (SWV), amperometry, and square wave anodic stripping voltammetry (SWASV). The direct metallic connection to CNTs gives access to the exceptional properties of highly ordered open-ended CNTs as electrochemical sensors. The distinct structural and electronic properties of aligned HD-CNTf rods in the μ-ES demonstrate fast electron transfer kinetics and offer excellent detection performance during testing for different analytes with wide linear ranges, excellent sensitivity, and very low limits of detection.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Connor E Rahm
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Benjamin Griesmer
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Noe T Alvarez
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
6
|
Al-Hashimi NN, El-Sheikh AH, Alruwad MI, Odeh MM. Solvent bar microextraction combined with HPLC-DAD for simultaneous determination of diuretics in human urine and plasma samples. Curr Pharm Biotechnol 2021; 23:1204-1213. [PMID: 33618643 DOI: 10.2174/1389201022666210222111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A simple and powerful microextraction procedure, the solvent bar microextraction (SBME), was used for the simultaneous determination of two diuretics, furosemide and spironolactone in human urine and plasma samples, using high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). METHODS The appropriate amount (2 µL) of 1-octanol as an organic solvent confined within (2.5 cm) of a porous hollow fiber micro-tube, sealed at both ends was used for this procedure. The conditions for the SBME were optimized in water and the analytical performance were examined in spiked human urine and plasma samples. RESULTS The optimized method exhibited good linearity (R2 > 0.997) over the studied range of higher than 33 to 104 µg L-1 for furosemide and spironolactone in urine and plasma samples, illustrating a satisfactory precision level with RSD values between 2.1% and 9.1%. DISCUSSION The values of the limits of detection were found to be in the range of 6.39 to 9.67 µg L-1, and extraction recovery˃ 58.8% for both diuretics in urine and plasma samples. The applicability and effectiveness of the proposed method for the determination of furosemide and spironolactone in patient urine samples were tested. CONCLUSION In comparison with reference methods, the attained results demonstrated that SBME combined with HPLC-DAD was proved to be simple, inexpensive, and promising analytical technology for the simultaneous determination of furosemide and spironolactone in urine and plasma samples.
Collapse
Affiliation(s)
- Nabil N Al-Hashimi
- The Hashemite University, Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, P.O. Box 330127, Al-Zarqa 13133. Jordan
| | - Amjad H El-Sheikh
- The Hashemite University, Faculty of Science, Department of Chemistry, P.O. Box 150459, Al-Zarqa 13115. Jordan
| | - Manal I Alruwad
- The Hashemite University, University Health Center, P.O. Box 330127, Al-Zarqa 13133. Jordan
| | - Mohanad M Odeh
- The Hashemite University, Faculty of Pharmaceutical Sciences, Department of Clinical Pharmacy and Pharmacy Practice, P.O. Box 330127, Al-Zarqa 13133. Jordan
| |
Collapse
|
7
|
Purcell EK, Becker MF, Guo Y, Hara SA, Ludwig KA, McKinney CJ, Monroe EM, Rechenberg R, Rusinek CA, Saxena A, Siegenthaler JR, Sortwell CE, Thompson CH, Trevathan JK, Witt S, Li W. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. MICROMACHINES 2021; 12:128. [PMID: 33530395 PMCID: PMC7911340 DOI: 10.3390/mi12020128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.
Collapse
Affiliation(s)
- Erin K. Purcell
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Yue Guo
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
| | - Seth A. Hara
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Collin J. McKinney
- Department of Chemistry, Electronics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Elizabeth M. Monroe
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Cory A. Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Caryl E. Sortwell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cort H. Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Suzanne Witt
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Festinger N, Lemiesz A, Skowron E, Smarzewska S, Ciesielski W. A Comparison of Edge‐plane and Basal‐plane Pyrolytic Graphite Electrodes towards Sensitive Determination of the Fungicide Mandipropamid. ELECTROANAL 2020. [DOI: 10.1002/elan.202060387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natalia Festinger
- University of Lodz, Faculty of Chemistry Department of Inorganic and Analytical Chemistry 12 Tamka Street 91-403 Lodz Poland
| | - Adrianna Lemiesz
- University of Lodz, Faculty of Chemistry Department of Inorganic and Analytical Chemistry 12 Tamka Street 91-403 Lodz Poland
| | - Ewelina Skowron
- University of Lodz, Faculty of Chemistry Department of Inorganic and Analytical Chemistry 12 Tamka Street 91-403 Lodz Poland
| | - Sylwia Smarzewska
- University of Lodz, Faculty of Chemistry Department of Inorganic and Analytical Chemistry 12 Tamka Street 91-403 Lodz Poland
| | - Witold Ciesielski
- University of Lodz, Faculty of Chemistry Department of Inorganic and Analytical Chemistry 12 Tamka Street 91-403 Lodz Poland
| |
Collapse
|
9
|
Silva EF, Tanaka AA, Fernandes RN, Munoz RAA, da Silva IS. Batch injection analysis with electrochemical detection for the simultaneous determination of the diuretics furosemide and hydrochlorothiazide in synthetic urine and pharmaceutical samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Vasconcelos SC, Rodrigues EM, de Almeida LG, Lepri FG, Pacheco WF, Semaan FS, Dornellas RM. An improved drop casting electrochemical strategy for furosemide quantification in natural waters exploiting chemically reduced graphene oxide on glassy carbon electrodes. Anal Bioanal Chem 2020; 412:7123-7130. [PMID: 32737552 DOI: 10.1007/s00216-020-02845-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 11/28/2022]
Abstract
This work exploits the applicability of a chemically reduced graphene oxide (CRGO) modification on the electrochemical response of a glassy carbon electrode (GCE) for the first-time sensitive determination of furosemide in natural waters. The batch injection analysis (BIA) is proposed as an analytical method, where CRGO-GCE is coupled to a BIA cell for amperometric measurements. Acetate buffer (0.1 μmol L-1, pH 5.2) was used as the background electrolyte. The modification provided an increase in sensitivity (0.024 μA/μmol L-1), low limit of detection (0.7 μmol L-1), RSD (< 4%), and broad linear range (1-600 μmol L-1). Recovery tests performed in two different concentration ranges resulted in values between 89 and 99%. Recovery tests were performed and compared with high-performance liquid chromatography (HPLC) with UV-Vis detection using Student's t test at a 95% significance level, and no significant differences were found, confirming the accuracy of the method. The developed method is proven faster (169 h-1) compared with the HPLC analysis (5 h-1), also comparable with other flow procedures hereby described, offering a low-cost strategy suitable to quantify an emerging pharmaceutical pollutant. Graphical abstract.
Collapse
Affiliation(s)
- Sancler C Vasconcelos
- Peter Sørensen Group of Analytical Chemistry, Institute of Chemistry, Fluminense Federal University, Niteroi, RJ, 24020-141, Brazil
| | - Eduardo M Rodrigues
- Peter Sørensen Group of Analytical Chemistry, Institute of Chemistry, Fluminense Federal University, Niteroi, RJ, 24020-141, Brazil
| | - Leonardo G de Almeida
- Peter Sørensen Group of Analytical Chemistry, Institute of Chemistry, Fluminense Federal University, Niteroi, RJ, 24020-141, Brazil
| | - Fábio G Lepri
- Peter Sørensen Group of Analytical Chemistry, Institute of Chemistry, Fluminense Federal University, Niteroi, RJ, 24020-141, Brazil
| | - Wagner F Pacheco
- Peter Sørensen Group of Analytical Chemistry, Institute of Chemistry, Fluminense Federal University, Niteroi, RJ, 24020-141, Brazil
| | - Felipe S Semaan
- Peter Sørensen Group of Analytical Chemistry, Institute of Chemistry, Fluminense Federal University, Niteroi, RJ, 24020-141, Brazil
| | - Rafael M Dornellas
- Peter Sørensen Group of Analytical Chemistry, Institute of Chemistry, Fluminense Federal University, Niteroi, RJ, 24020-141, Brazil.
| |
Collapse
|
11
|
Lourencao BC, Brocenschi RF, Medeiros RA, Fatibello‐Filho O, Rocha‐Filho RC. Analytical Applications of Electrochemically Pretreated Boron‐Doped Diamond Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000050] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bruna C. Lourencao
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Ricardo F. Brocenschi
- Centro de Estudos do Mar Universidade Federal do Paraná (UFPR) C.P. 61 83255-976 Pontal do Paraná – PR Brazil
| | - Roberta A. Medeiros
- Departamento de Química Universidade Estadual de Londrina (UEL) C.P. 10.011 86057-970 Londrina – PR Brazil
| | - Orlando Fatibello‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| | - Romeu C. Rocha‐Filho
- Departamento de Química Universidade Federal de São Carlos (UFSCar) C.P. 676 13560-970 São Carlos – SP Brazil
| |
Collapse
|
12
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
13
|
Sousa CP, Ribeiro FWP, Oliveira TMBF, Salazar‐Banda GR, de Lima‐Neto P, Morais S, Correia AN. Electroanalysis of Pharmaceuticals on Boron‐Doped Diamond Electrodes: A Review. ChemElectroChem 2019. [DOI: 10.1002/celc.201801742] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Camila P. Sousa
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| | - Francisco W. P. Ribeiro
- Instituto de Formação de EducadoresUniversidade Federal do Cariri Rua Olegário Emídio de Araújo Centro 63260-000 Brejo Santo, CE Brazil
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e TecnologiaUniversidade Federal do Cariri Av. Tenente Raimundo Rocha, Cidade Universitária 63048-080 Juazeiro do Norte, CE Brazil
| | - Giancarlo R. Salazar‐Banda
- Instituto de Tecnologia e Pesquisa/ Programa de Pós-Graduação em Engenharia de ProcessosUniversidade Tiradentes 49032-490 Aracaju, SE Brazil
| | - Pedro de Lima‐Neto
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| | - Simone Morais
- REQUIMTE-LAQVInstituto Superior de Engenharia do Porto Instituto Politécnico do Porto R. Dr. António Bernardino de Almeida 431
| | - Adriana N. Correia
- Departamento de Química Analítica e Físico-Química Centro de CiênciasUniversidade Federal do Ceará Bloco 940, Campus do Pici Pici Fortaleza CE 60440-900 Brazil
| |
Collapse
|
14
|
Faure M, Billon F, Le Potier I, Haghiri-Gosnet AM, Tribollet B, Pailleret A, Deslouis C, Gamby J. Improvement of electrochemical detection of transthyretin synthetic peptide and its amino acids on carbon electrodes: Glassy carbon versus amorphous carbon nitride a-CNx. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Ören Varol T, Anik Ü. Fabrication of multi-walled carbon nanotube–metallic nanoparticle hybrid nanostructure based electrochemical platforms for sensitive and practical colchicine detection. NEW J CHEM 2019. [DOI: 10.1039/c9nj03227d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MWCNT–Au–Pt hybrid nanostructure was used in the fabrication of electrochemical colchicine sensors for the first time.
Collapse
Affiliation(s)
- Tuğba Ören Varol
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- 48000 Kötekli
- Turkey
| | - Ülkü Anik
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- 48000 Kötekli
- Turkey
| |
Collapse
|
16
|
Rocha LR, D'Elia E, Medeiros RA, Tarley CRT. Electroanalytical Determination of Morpholine as a Corrosion Inhibitor at a Cathodically Pretreated Boron-Doped Diamond Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1515953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Luana Rianne Rocha
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Eliane D'Elia
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta Antigo Medeiros
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - César Ricardo Teixeira Tarley
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
- Departamento de Química Analítica, Instituto de Química, Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
17
|
Faure M, Billon F, Haghiri-Gosnet AM, Tribollet B, Deslouis C, Pailleret A, Gamby J. Influence of the atomic nitrogen content in amorphous carbon nitride thin films on the modulation of their polarizable interfaces properties. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Blout A, Billon F, Calers C, Méthivier C, Pailleret A, Perrot H, Jolivalt C. Orientation of a Trametes versicolor laccase on amorphous carbon nitride coated graphite electrodes for improved electroreduction of dioxygen to water. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Bonacin JA, Dos Santos PL, Katic V, Foster CW, Banks CE. Use of Screen-printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine. ELECTROANAL 2017. [DOI: 10.1002/elan.201700628] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juliano A. Bonacin
- Institute of Chemistry; University of Campinas; P. O. Box 6154, 13083-970 Campinas, SP Brazil
| | - Pãmyla L. Dos Santos
- Institute of Chemistry; University of Campinas; P. O. Box 6154, 13083-970 Campinas, SP Brazil
| | - Vera Katic
- Institute of Chemistry; University of Campinas; P. O. Box 6154, 13083-970 Campinas, SP Brazil
| | - Christopher W. Foster
- Faculty of Science and Engineering; Manchester Metropolitan University; Chester Street Manchester M15 GD UK
| | - Craig E. Banks
- Faculty of Science and Engineering; Manchester Metropolitan University; Chester Street Manchester M15 GD UK
| |
Collapse
|
20
|
Kasahara S, Natsui K, Watanabe T, Yokota Y, Kim Y, Iizuka S, Tateyama Y, Einaga Y. Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction. Anal Chem 2017; 89:11341-11347. [DOI: 10.1021/acs.analchem.7b02129] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Seiji Kasahara
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Keisuke Natsui
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Takeshi Watanabe
- Department
of Electrical Engineering and Electronics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258, Japan
| | - Yasuyuki Yokota
- Surface
and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yousoo Kim
- Surface
and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shota Iizuka
- Center
for Green Research on Energy and Environmental Materials (GREEN) and
Research and Services Division of Materials Data and Integrated System
(MaDIS), National Institute of Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshitaka Tateyama
- Center
for Green Research on Energy and Environmental Materials (GREEN) and
Research and Services Division of Materials Data and Integrated System
(MaDIS), National Institute of Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yasuaki Einaga
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
- ACCEL, Japan Science and Technology Agency, 5-3 Yonbancho, Chiyoda-ku, Tokyo 102-8666, Japan
| |
Collapse
|
21
|
Schwarzová-Pecková K, Vosáhlová J, Barek J, Šloufová I, Pavlova E, Petrák V, Zavázalová J. Influence of boron content on the morphological, spectral, and electroanalytical characteristics of anodically oxidized boron-doped diamond electrodes. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Brocenschi RF, Hammer P, Deslouis C, Rocha-Filho RC. Assessments of the Effect of Increasingly Severe Cathodic Pretreatments on the Electrochemical Activity of Polycrystalline Boron-Doped Diamond Electrodes. Anal Chem 2016; 88:5363-8. [DOI: 10.1021/acs.analchem.6b00676] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ricardo F. Brocenschi
- Departamento
de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, São Paulo Brazil
| | - Peter Hammer
- Instituto
de Química, Universidade Estadual de São Paulo, 14800-060 Araraquara, São Paulo Brazil
| | - Claude Deslouis
- Laboratoire Interfaces et Systèmes
Electrochimiques (LISE), UMR8235, CNRS, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
| | - Romeu C. Rocha-Filho
- Departamento
de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, São Paulo Brazil
| |
Collapse
|