1
|
Moshrefi R, Ryan K, Connors EP, Walsh JC, Merschrod E, Bodwell GJ, Stockmann TJ. Electrosynthesis of Au nanocluster embedded conductive polymer films at soft interfaces using dithiafulvenyl-functionalized pyrene. NANOSCALE 2023; 15:5834-5842. [PMID: 36861258 DOI: 10.1039/d2nr06519c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoparticle (NP) embedded conductive polymer films are desirable platforms for electrocatalysis as well as biomedical and analytical applications. Increased catalytic and analytical performance is accompanied by concomitant decreases in NP size. Herein, highly reproducible electrogeneration of low dispersity Au nanocluster embedded ultra-thin (∼2 nm) conductive polymer films at a micro liquid|liquid interface is demonstrated. Confinement at a micropipette tip facilitates a heterogeneous electron transfer process across the interface between two immiscible electrolyte solutions (ITIES), between KAuCl4(aq) and a dithiafulvenyl-substituted pyrene monomer, 4,5-didecoxy-1,8-bis(dithiafulven-6-yl)pyrene (bis(DTF)pyrene), in oil, i.e., a w|o interface. At a large ITIES the reaction is spontaneous, rapid, and proceeds via transfer of AuCl4- to the oil phase, followed by homogeneous electron transfer generating uncontrolled polymer growth with larger (∼50 nm) Au nanoparticles (NPs). Thus, miniaturization facilitates external, potential control and limits the reaction pathway. Atomic (AFM) and Kelvin probe force microscopies (KPFM) imaged the topography and work function distribution of the as-prepared films. The latter was linked to nanocluster distribution.
Collapse
Affiliation(s)
- Reza Moshrefi
- Memorial University of Newfoundland, Core Science Facility, 45 Arctic Ave, St. John's, NL, Canada, A1C 5S7.
| | - Katelyn Ryan
- Memorial University of Newfoundland, Core Science Facility, 45 Arctic Ave, St. John's, NL, Canada, A1C 5S7.
| | - Evan P Connors
- Memorial University of Newfoundland, Core Science Facility, 45 Arctic Ave, St. John's, NL, Canada, A1C 5S7.
| | - Joshua C Walsh
- Memorial University of Newfoundland, Core Science Facility, 45 Arctic Ave, St. John's, NL, Canada, A1C 5S7.
| | - Erika Merschrod
- Memorial University of Newfoundland, Core Science Facility, 45 Arctic Ave, St. John's, NL, Canada, A1C 5S7.
| | - Graham J Bodwell
- Memorial University of Newfoundland, Core Science Facility, 45 Arctic Ave, St. John's, NL, Canada, A1C 5S7.
| | - Talia Jane Stockmann
- Memorial University of Newfoundland, Core Science Facility, 45 Arctic Ave, St. John's, NL, Canada, A1C 5S7.
| |
Collapse
|
2
|
Pattisson S, Dawson SR, Malta G, Dummer NF, Smith LR, Lazaridou A, Morgan DJ, Freakley SJ, Kondrat SA, Smit JJ, Johnston P, Hutchings GJ. Lowering the Operating Temperature of Gold Acetylene Hydrochlorination Catalysts Using Oxidized Carbon Supports. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Samuel Pattisson
- Max Planck Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CardiffCF10 3AT, U.K
| | - Simon R. Dawson
- Max Planck Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CardiffCF10 3AT, U.K
| | - Grazia Malta
- Max Planck Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CardiffCF10 3AT, U.K
| | - Nicholas F. Dummer
- Max Planck Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CardiffCF10 3AT, U.K
| | - Louise R. Smith
- Max Planck Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CardiffCF10 3AT, U.K
| | - Anna Lazaridou
- Max Planck Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CardiffCF10 3AT, U.K
| | - David J. Morgan
- Max Planck Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CardiffCF10 3AT, U.K
| | | | - Simon A. Kondrat
- Department of Chemistry, Loughborough University, LoughboroughLE11 3TU, U.K
| | - Joost J. Smit
- Johnson Matthey, Catalyst Technologies, Eastbourne Terrace, LondonW2 6LG, U.K
| | - Peter Johnston
- Johnson Matthey, Catalyst Technologies, Belasis Avenue, BillinghamTS23 1LB, U.K
| | - Graham J. Hutchings
- Max Planck Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CardiffCF10 3AT, U.K
| |
Collapse
|
3
|
Moshrefi R, Stockmann TJ. Electrodeless Synthesis of Low Dispersity Au Nanoparticles and Nanoclusters at an Immiscible Micro Water/Ionic Liquid Interface. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2748. [PMID: 36014613 PMCID: PMC9416156 DOI: 10.3390/nano12162748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Owing to their biocompatibility, optical, and catalytic properties, Au nanoparticles (NPs) have been the subject of much research. Since smaller NPs have enhanced catalytic properties and NP morphology greatly impacts their effectiveness, controlled and reproducible methods of generating Au NPs are still being sought. Herein, Au NPs were electrochemically generated at a water|ionic liquid (w|IL) immiscible micro-interface, 25 µm in diameter, using a redox active IL and compared to results at a water|oil (w|o) one. The liquid|liquid interface is advantageous as it is pristine and highly reproducible, as well as an excellent means of species and charge separation. In this system, KAuCl4 dissolved in the aqueous phase reacts under external potential control at the water|P8888TB (tetraoctylphosphonium tetrakis(pentafluorophenyl)borate) with trioctyl(ferrocenylhexanoyl)phosphonium tetrakis(pentafluorophenyl)borate (FcIL), an electron donor and redox active IL. FcIL was prepared with a common anion to P8888TB, which greatly enhances its solubility in the bulk IL. Simple ion transfer of AuCl4− and AuCl(4−γ)(OH)γ− at the w|P8888TB micro-interface were characterized voltammetrically as well as their heterogeneous electron transfer reaction with FcIL. This interfacial reaction generates Au NPs whose size can be thermodynamically controlled by modifying the pH of the aqueous phase. Critically, at low pH, nanoclusters, <1.7 nm in diameter, were generated owing to inhibited thermodynamics in combination with the supramolecular fluidic nature of the IL microenvironment that was observed surrounding the as-prepared NPs.
Collapse
|
4
|
Moshrefi R, Connors E, Merschrod E, Stockmann TJ. Simultaneous electropolymerization/Au nanoparticle generation at an electrified liquid/liquid micro-interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Moshrefi R, Suryawanshi A, Stockmann TJ. Electrochemically controlled Au nanoparticle nucleation at a micro liquid/liquid interface using ferrocene as reducing agent. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
6
|
Kuroyama Y, Nishi N, Sakka T. Electrochemical liquid-liquid interface between oil and ionic liquid for reductive deposition of metal nanostructures. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Husmann S, Zarbin AJ, Dryfe RA. High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Priola E, Volpi G, Rabezzana R, Borfecchia E, Garino C, Benzi P, Martini A, Operti L, Diana E. Bridging Solution and Solid-State Chemistry of Dicyanoaurate: The Case Study of Zn–Au Nucleation Units. Inorg Chem 2019; 59:203-213. [DOI: 10.1021/acs.inorgchem.9b00961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emanuele Priola
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Giorgio Volpi
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Roberto Rabezzana
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Elisa Borfecchia
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Claudio Garino
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Paola Benzi
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Andrea Martini
- Department of Physics, University of Turin, Via P. Giuria 1, 10125 Turin, Italy
- International Research Institute “Smart Materials”, Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
| | - Lorenza Operti
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Eliano Diana
- Department of Chemistry and NIS Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
- CriSDi, Interdepartmental Center for Crystallography, Via Pietro Giuria 7, 10125 Turin, Italy
| |
Collapse
|
9
|
Jin L, Liu C, Yang FZ, Wu DY, Tian ZQ. Coordination behavior of theophylline with Au(III) and electrochemical reduction of the complex. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Braga MH, Oliveira JE, Kai T, Murchison AJ, Bard AJ, Goodenough JB. Extraordinary Dielectric Properties at Heterojunctions of Amorphous Ferroelectrics. J Am Chem Soc 2018; 140:17968-17976. [PMID: 30482017 DOI: 10.1021/jacs.8b09603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Materials having a high dielectric constant are needed for a variety of electrical applications from transistors to capacitors. Ferroelectric amorphous-oxide (glass) alkali-ion electrolytes of composition A2.99Ba0.005ClO (A = Li, Na) are shown by two different types of measurement and different consistent analyses to have extraordinarily high dielectric constants, varying from 109 at 25 °C to 1010 at 220 °C if the glass is properly conditioned. These anomalously high dielectric properties coexist with alkali-ion conductivities at 25 °C that are equivalent to those of the best organic-liquid electrolytes of a Li-ion cell, and cyclic voltammetry (CV) in a Au/glass electrolyte/Au cell is stable from -10 to +10 V. A model to interpret microscopically all the key features of the CV curves shows that the electric-double-layer capacitors that form at the gold/electrolyte interfaces in the Au/glass electrolyte/Au heterojunction reverse polarization at an applied voltage V = ±2.1 V, resulting in three almost equivalent discharging capacitances for a single physical capacitor from -10 to +10 V.
Collapse
Affiliation(s)
- M Helena Braga
- The Materials Institute, Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,LAETA, Department of Engineering Physics, FEUP , University of Porto , 4200-465 Porto , Portugal
| | - Joana E Oliveira
- LAETA, Department of Engineering Physics, FEUP , University of Porto , 4200-465 Porto , Portugal
| | - Tianhan Kai
- Center for Electrochemistry, Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Andrew J Murchison
- The Materials Institute, Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Allen J Bard
- Center for Electrochemistry, Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - John B Goodenough
- The Materials Institute, Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
11
|
Lin H, Li G, Dong Y, Li J. Effect of pH on the release of heavy metals from stone coal waste rocks. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.minpro.2017.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Ren B, Jones LA, Oppedisano DK, Kandjani AE, Chen M, Antolasic F, Ippolito SJ, Bhargava SK. The Preparation of a AuCN/Prussian Blue Nanocube Composite through Galvanic Replacement Enhances Stability for Electrocatalysis. ChemistrySelect 2017. [DOI: 10.1002/slct.201700908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baiyu Ren
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Lathe A. Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Daniel K. Oppedisano
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Ahmad Esmaielzadeh Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Miao Chen
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
- CSIRO Mineral Resources; Clayton, VIC 3169 Australia
| | - Frank Antolasic
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Samuel J. Ippolito
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
- School of Engineering; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| |
Collapse
|
13
|
Booth SG, Chang SY, Uehara A, La Fontaine C, Cibin G, Schroeder SL, Dryfe RA. In situ XAFS Study of Palladium Electrodeposition at the Liquid/Liquid Interface. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|