1
|
Jin L, Li L, Zeng X, Yu S, Zhang J. The ratiometric fluorescent sensor based on the mixture of CdTe quantum dots and graphene quantum dots for quantitative analysis of silver in drinks. Food Chem 2023; 429:136926. [PMID: 37487396 DOI: 10.1016/j.foodchem.2023.136926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Silver nanoparticles can be used in antibacterial packaging or disinfection. Research has shown that sugary fluid induces the leaching of silver nanoparticles into water, which may be harmful to humans. Single wavelength fluorescence analysis has been used for quantitative analysis of silver nanoparticles but suffers from low specificity and poor anti-interference ability. In this paper, a ratiometric fluorescence sensor system (GCS) was used for the detection of Ag+, which realized both visual detection and quantitative analysis of silver in drinks. The color changes of GCS with different concentrations of Ag+ are distinguishable and easy to analyze. There is also a good linear relationship between the concentrations of Ag+ and varieties of F424 nm/F570 nm, and the lowest detection limit reached 0.2266 nmol/L. This GCS shows good selectivity and recovery and could be used for the detection of Ag+ in drink samples.
Collapse
Affiliation(s)
- Li Jin
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Lan Li
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xiaodan Zeng
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Shihua Yu
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jianpo Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
2
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
3
|
Gulati S, Baul A, Amar A, Wadhwa R, Kumar S, Varma RS. Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:554. [PMID: 36770515 PMCID: PMC9920802 DOI: 10.3390/nano13030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Carbon quantum dots (CQDs), a new family of photoluminescent 0D NPs, have recently received a lot of attention. They have enormous future potential due to their unique properties, which include low toxicity, high conductivity, and biocompatibility and accordingly can be used as a feasible replacement for conventional materials deployed in various optoelectronic, biomedical, and energy applications. The most recent trends and advancements in the synthesizing and setup of photoluminescent CQDs using environmentally friendly methods are thoroughly discussed in this review. The eco-friendly synthetic processes are emphasized, with a focus on biomass-derived precursors. Modification possibilities for creating newer physicochemical properties among different CQDs are also presented, along with a brief conceptual overview. The extensive amount of writings on them found in the literature explains their exceptional competence in a variety of fields, making these nanomaterials promising alternatives for real-world applications. Furthermore, the benefits, drawbacks, and opportunities for CQDs are discussed, with an emphasis on their future prospects in this emerging research field.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Arikta Baul
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Anoushka Amar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rachit Wadhwa
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
4
|
Fan ZC, Li Z, Wei XY, Kong QQ, Liu ZQ, Li L, Li JH, Yin F, Lu KL, Zong ZM. Longquan lignite-derived hierarchical porous carbon electrochemical sensor for simultaneous detection of hazardous catechol and hydroquinone in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Qiu J, Na L, Li Y, Bai W, Zhang J, Jin L. N,S-GQDs mixed with CdTe quantum dots for ratiometric fluorescence visual detection and quantitative analysis of malachite green in fish. Food Chem 2022; 390:133156. [DOI: 10.1016/j.foodchem.2022.133156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
|
6
|
Du Y, Wang B, Kang K, Ji X, Wang L, Zhao W, Ren J. Signal synergistic amplification strategy based on functionalized CeMOFs for highly sensitive electrochemical detection of phenolic isomers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Wu S, Jiang M, Mao H, Zhao N, He D, Chen Q, Liu D, Zhang W, Song XM. A sensitive cholesterol electrochemical biosensor based on biomimetic cerasome and graphene quantum dots. Anal Bioanal Chem 2022; 414:3593-3603. [PMID: 35217877 DOI: 10.1007/s00216-022-03986-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
A simple and sensitive electrochemical cholesterol biosensor was fabricated based on ceramic-coated liposome (cerasome) and graphene quantum dots (GQDs) with good conductivity. The cerasome consists of a lipid-bilayer membrane and a ceramic surface as a soft biomimetic interface, and the mild layer-by-layer self-assembled method as the immobilization strategy on the surface of the modified electrode was used, which can provide good biocompatibility to maintain the biological activity of cholesterol oxidase (ChOx). The GQDs promoted electron transport between the enzyme and the electrode more effectively. The structure of the cerasome-forming lipid was characterized by Fourier transform infrared (FT-IR). The morphology and characteristics of the cerasome and GQDs were characterized by transmission electron microscopy (TEM), zeta potential, photoluminescence spectra (PL), etc. The proposed biosensors revealed excellent catalytic performance to cholesterol with a linear concentration range of 16.0 × 10-6-6.186 × 10-3 mol/L, with a low detection limit (LOD) of 5.0 × 10-6 mol/L. The Michaelis-Menten constant (Km) of ChOx was 5.46 mmol/L, indicating that the immobilized ChOx on the PEI/GQDs/PEI/cerasome-modified electrode has a good affinity to cholesterol. Moreover, the as-fabricated electrochemical biosensor exhibited good stability, anti-interference ability, and practical application for cholesterol detection.
Collapse
Affiliation(s)
- Shuyao Wu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Meijiao Jiang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Hui Mao
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Nan Zhao
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Dongqing He
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Qinan Chen
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Daliang Liu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Wei Zhang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
8
|
Bonet-San-Emeterio M, Felipe Montiel N, del Valle M. Graphene for the Building of Electroanalytical Enzyme-Based Biosensors. Application to the Inhibitory Detection of Emerging Pollutants. NANOMATERIALS 2021; 11:nano11082094. [PMID: 34443924 PMCID: PMC8400611 DOI: 10.3390/nano11082094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022]
Abstract
Graphene and its derivates offer a wide range of possibilities in the electroanalysis field, mainly owing to their biocompatibility, low-cost, and easy tuning. This work reports the development of an enzymatic biosensor using reduced graphene oxide (RGO) as a key nanomaterial for the detection of contaminants of emerging concern (CECs). RGO was obtained from the electrochemical reduction of graphene oxide (GO), an intermediate previously synthesized in the laboratory by a wet chemistry top-down approach. The extensive characterization of this material was carried out to evaluate its proper inclusion in the biosensor arrangement. The results demonstrated the presence of GO or RGO and their correct integration on the sensor surface. The detection of CECs was carried out by modifying the graphene platform with a laccase enzyme, turning the sensor into a more selective and sensitive device. Laccase was linked covalently to RGO using the remaining carboxylic groups of the reduction step and the carbodiimide reaction. After the calibration and characterization of the biosensor versus catechol, a standard laccase substrate, EDTA and benzoic acid were detected satisfactorily as inhibiting agents of the enzyme catalysis obtaining inhibition constants for EDTA and benzoic acid of 25 and 17 mmol·L−1, respectively, and a maximum inhibition percentage of the 25% for the EDTA and 60% for the benzoic acid.
Collapse
|
9
|
Bressi V, Ferlazzo A, Iannazzo D, Espro C. Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1120. [PMID: 33925972 PMCID: PMC8146976 DOI: 10.3390/nano11051120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
The continuous decrease in the availability of fossil resources, along with an evident energy crisis, and the growing environmental impact due to their use, has pushed scientific research towards the development of innovative strategies and green routes for the use of renewable resources, not only in the field of energy production but also for the production of novel advanced materials and platform molecules for the modern chemical industry. A new class of promising carbon nanomaterials, especially graphene quantum dots (GQDs), due to their exceptional chemical-physical features, have been studied in many applications, such as biosensors, solar cells, electrochemical devices, optical sensors, and rechargeable batteries. Therefore, this review focuses on recent results in GQDs synthesis by green, easy, and low-cost synthetic processes from eco-friendly raw materials and biomass-waste. Significant advances in recent years on promising recent applications in the field of electrochemical sensors, have also been discussed. Finally, challenges and future perspectives with possible research directions in the topic are briefly summarized.
Collapse
Affiliation(s)
| | | | | | - Claudia Espro
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Vill. S. Agata, I-98166 Messina, Italy; (V.B.); (A.F.); (D.I.)
| |
Collapse
|
10
|
Jaiswal A, Kumar A, Prakash R. Facile synthesis of doped C xN y QDs as photoluminescent matrix for direct detection of hydroquinone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119019. [PMID: 33068899 DOI: 10.1016/j.saa.2020.119019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, we are reporting facile hydrothermal synthesis of a highly photoluminescent doped carbon nitride quantum dots (CxNyQDs) and implied it for direct detection of hydroquinone (H2Q) by photoluminescence quenching phenomenon. Oxygen and sulphur moieties are regarded as dopant species in CxNyQDs and sourced from cheap solid precursors viz. cysteine and maleic acid. Morphological studies of CxNyQDs have done by SEM and TEM techniques, while structural analysis has carried out using FTIR, XPS, EDS and UV-Visible spectroscopy. The strong tendency of dispersivity of this QD in water has revealed by its zeta potential value of -32.4 mV. Optical properties of the as-prepared QDs have optimized at different excitation wavelengths. The photoluminescence stability of the dispersion is tested in various pH solutions and under continuous UV irradiation (365 nm). After that, sensing property is observed in quenching of photoluminescence feature of as-prepared QDs by direct addition of various concentrations of H2Q. We obtained lower detection limit (LOD) of 50 nM (S/N = 3) in linear range from 12 to 57.5 μM. The reduction in photoluminescence of QDs may be attributed to electron transfer from QDs to oxidized H2Q via -S- and -COO- groups present at its surface. Further, as-prepared QDs matrix exhibited high selectivity for hydroquinone over a range of potential interfering agents. Thus, the present work shows cost-effective facile synthesis of highly stable O- and S-doped carbon nitride (CxNy) quantum dots as promising photoluminescent sensor for pollutant hydroquinone without help of any enzyme or polymer assisted system.
Collapse
Affiliation(s)
- Aniruddha Jaiswal
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashish Kumar
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rajiv Prakash
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
11
|
Hassanvand Z, Jalali F, Nazari M, Parnianchi F, Santoro C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202001229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Maryam Nazari
- Faculty of Chemistry Razi University Kermanshah Iran
| | | | - Carlo Santoro
- Department of Chemical Engineering and Analytical Science The University of Manchester The Mill Sackville Street Manchester M13PAL UK
| |
Collapse
|
12
|
Integration of a photoelectrochemical cell in a flow system for quantification of 4-aminophenol with titanium dioxide. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
13
|
Silva WA, de Almeida LG, Feiteira FN, Semaan FS, Aucélio RQ, Dornellas RM, Pacheco WF. Novel Electrochemical Determination of Atorvastatin by Monitoring the Suppression of a Lead Probe. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1773491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wanderson A. Silva
- Coordenação de Licenciatura em Física, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Petrópolis, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Instituto de Química, Niterói, Brazil
| | - Leonardo G. de Almeida
- Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Instituto de Química, Niterói, Brazil
| | - Fernanda N. Feiteira
- Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Instituto de Química, Niterói, Brazil
| | - Felipe S. Semaan
- Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Instituto de Química, Niterói, Brazil
| | - Ricardo Q. Aucélio
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - Rafael M. Dornellas
- Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Instituto de Química, Niterói, Brazil
| | - Wagner F. Pacheco
- Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Instituto de Química, Niterói, Brazil
| |
Collapse
|
14
|
Pizarro J, Segura R, Tapia D, Navarro F, Fuenzalida F, Jesús Aguirre M. Inexpensive and green electrochemical sensor for the determination of Cd(II) and Pb(II) by square wave anodic stripping voltammetry in bivalve mollusks. Food Chem 2020; 321:126682. [PMID: 32278274 DOI: 10.1016/j.foodchem.2020.126682] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 11/18/2022]
Abstract
An inexpensive and environmental friendly electrochemical sensor based on a glassy carbon electrode (GC) modified with graphene quantum dots (GQDs) and Nafion (NF) has been developed for the determination of Cd(II) and Pb(II) in bivalve mollusks using square wave anodic stripping voltammetry (SWASV). GQDs were characterized by UV-Vis spectroscopy, fluorescence and transmission electronic microscopy (TEM). The modified electrode was evaluated by cyclic voltammetry, scanning electronic microscopy (SEM) and electrochemical impedance spectroscopy (EIS). A linearity of 20-200 μg L-1 was found, with a limit of detection (LOD) of 11.30 μg L-1 for Cd(II) and 8.49 μg L-1 for Pb(II). The proposed methodology was validated with a certified reference material TMDA-64.2. The reproducibility of GC/GQDs-NF for both species had an RSD of less than 10%. The results were compared with ICP-OES. The method was applied in the determination of Cd(II) and Pb(II) in bivalve mollusks samples with excellent results.
Collapse
Affiliation(s)
- Jaime Pizarro
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 3363, Chile.
| | - Rodrigo Segura
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 3363, Chile.
| | - Diego Tapia
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 3363, Chile
| | - Freddy Navarro
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 3363, Chile
| | - Francesca Fuenzalida
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 3363, Chile
| | - María Jesús Aguirre
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 3363, Chile
| |
Collapse
|
15
|
Simultaneous voltammetric determination of hydroquinone and catechol by using a glassy carbon electrode modified with a ternary nanocomposite prepared from oxidized multiwalled carbon nanotubes, manganese dioxide and manganese ferrite. Mikrochim Acta 2019; 186:643. [PMID: 31444572 DOI: 10.1007/s00604-019-3750-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
An electrochemical sensor is described for simultaneous determination of hydroquinone (HQ) and catechol (CT) via differential pulse voltammetry (DPV). It is making use of a ternary composite material prepared from oxidized multiwalled carbon nanotubes, manganese dioxide (MnO2) and manganese ferrite (MnFe2O4). The material was obtained by a one-step hydrothermal reaction and used to modify a glassy carbon electrode (GCE). The composite was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy and scanning electron microscopy. The peak currents for HQ and CT are highest at 172 and 276 mV (vs. Ag/AgCl) at a pH value of 6.0. Response increases linearly in the 1-400 μM HQ and CT concentration ranges, and the detection limits are 0.64 and 0.48 μM, respectively. The modified GCE is highly selective, repeatable and reproducible. A single sensor was used to make 23 subsequent measurements, and the relative standard deviations were 1.8% and 2.3% for HQ and CT, respectively. Graphical abstract Schematic representation of the preparation of ternary nanocomposite and its electrochemical behavior towards hydroquinone and catechol.
Collapse
|
16
|
Liu L, Anwar S, Ding H, Xu M, Yin Q, Xiao Y, Yang X, Yan M, Bi H. Electrochemical sensor based on F,N-doped carbon dots decorated laccase for detection of catechol. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E634. [PMID: 31010125 PMCID: PMC6523669 DOI: 10.3390/nano9040634] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
Graphene quantum dots (GQDs) and carbon dots (CDs) are among the latest research frontiers in carbon-based nanomaterials. They provide interesting attributes to current electrochemical biosensing due to their intrinsic low toxicity, high solubility in many solvents, excellent electronic properties, robust chemical inertness, large specific surface area, abundant edge sites for functionalization, great biocompatibility, low cost, and versatility, as well as their ability for modification with attractive surface chemistries and other modifiers/nanomaterials. In this review article, the use of GQDs and CDs as signal tags or electrode surface modifiers to develop electrochemical biosensing strategies is critically discussed through the consideration of representative approaches reported in the last five years. The advantages and disadvantages arising from the use of GQDs and CDs in this context are outlined together with the still required work to fulfil the characteristics needed to achieve suitable electrochemical enzymatic and affinity biosensors with applications in the real world.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
18
|
Chen J, Gao Y, Hu X, Xu Y, Lu X. Detection of hydroquinone with a novel fluorescence probe based on the enzymatic reaction of graphite phase carbon nitride quantum dots. Talanta 2019; 194:493-500. [DOI: 10.1016/j.talanta.2018.09.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/25/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022]
|
19
|
Abstract
Background:
Graphene and its derivatives, as most promising carbonic nanomaterials have
been widely used in design and making electrochemical sensors and biosensors. Graphene quantum dots
are one of the members of this family which have been mostly known as fluorescent nanomaterials and
found extensive applications due to their remarkable optical properties. Quantum confinement and edge
effects in their structures also cause extraordinary electrochemical properties.
Objective:
Recently, graphene quantum dots besides graphene oxides and reduced graphene oxides have
been applied for modification of the electrodes too and exposed notable effects in electrochemical responses.
Here, we are going to consider these significant effects through reviewing some of the recent
published works.
Collapse
Affiliation(s)
- Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Afsaneh L. Sanati
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Fajardo A, Tapia D, Pizarro J, Segura R, Jara P. Determination of norepinephrine using a glassy carbon electrode modified with graphene quantum dots and gold nanoparticles by square wave stripping voltammetry. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01288-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Graphene Quantum Dots Modified Screen‐printed Electrodes as Electroanalytical Sensing Platform for Diethylstilbestrol. ELECTROANAL 2019. [DOI: 10.1002/elan.201800838] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Nekoueian K, Amiri M, Sillanpää M, Marken F, Boukherroub R, Szunerits S. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev 2019; 48:4281-4316. [DOI: 10.1039/c8cs00445e] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon-based quantum particles, especially spherical carbon quantum dots (CQDs) and nanosheets like graphene quantum dots (GQDs), are an emerging class of quantum dots with unique properties owing to their quantum confinement effect.
Collapse
Affiliation(s)
- Khadijeh Nekoueian
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
- Department of Green Chemistry
| | - Mandana Amiri
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| | - Mika Sillanpää
- Department of Green Chemistry
- School of Engineering Science
- Lappeenranta University of Technology
- Finland
| | - Frank Marken
- Department of Chemistry
- University of Bath
- Bath BA2 7AY
- UK
| | | | | |
Collapse
|
23
|
Dou D, Duan J, Zhao Y, He B, Tang Q. Cubic carbon quantum dots for light-harvesters in mesoscopic solar cells. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Li Z, Yue Y, Hao Y, Feng S, Zhou X. A glassy carbon electrode modified with cerium phosphate nanotubes for the simultaneous determination of hydroquinone, catechol and resorcinol. Mikrochim Acta 2018; 185:215. [PMID: 29594743 DOI: 10.1007/s00604-018-2748-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/22/2018] [Indexed: 11/30/2022]
Abstract
A nafion film containing cerium phosphate nanotubes was pasted onto a glassy carbon electrode (GCE) to obtain a sensor for hydroquinone (HQ). The morphologies and components of the coating were characterized by transmission electron microscopy, scanning electron microscopy and energy-dispersive spectroscopy. Cyclic voltammetry and differential pulse voltammetry (DPV) showed the specific surface of the electrode to be significantly increased and the electron transfer rate to be accelerated. The modified GCE was applied to the determination of hydroquinone (HQ) via DPV. The oxidation current increases linearly in the 0.23 μM to 16 mM HQ concentration range which is as wide as five orders of magnitude. The limit of detection is 0.12 μM (based on a signal-to-noise ratio of 3), and the sensitivity is 1.41 μA·μM-1 cm-2. The method was further applied to the simultaneous determination of HQ, catechol and resorcinol. The potentials for the three species are well separated (20, 134, and 572 mV vs SCE). Average recoveries from (spiked) real water samples are between 95.2 and 107.0%, with relative standard deviations of 0.9~2.7% (for n = 3) at three spiking levels. The method was validated by independent assays using HPLC. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Zhen Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuhua Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yanjun Hao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
25
|
|
26
|
Nickel oxide/carbon nanotube nanocomposites prepared by atomic layer deposition for electrochemical sensing of hydroquinone and catechol. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Ben Aoun S. Nanostructured carbon electrode modified with N-doped graphene quantum dots-chitosan nanocomposite: a sensitive electrochemical dopamine sensor. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171199. [PMID: 29291105 PMCID: PMC5717679 DOI: 10.1098/rsos.171199] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
A highly selective and sensitive dopamine electrochemical sensor based on nitrogen-doped graphene quantum dots-chitosan nanocomposite-modified nanostructured screen printed carbon electrode is presented, for the first time. Graphene quantum dots were prepared via microwave-assisted hydrothermal reaction of glucose, and nitrogen doping was realized by introducing ammonia in the reaction mixture. Chitosan incorporation played a significant role towards the selectivity of the prepared sensor by hindering the ascorbic acid interference and enlarging the peak potential separation between dopamine and uric acid. The proposed sensor's performance was shown to be superior to several recently reported investigations. The as-prepared CS/N,GQDs@SPCE exhibited a high sensitivity (i.e. ca. 418 µA mM cm-2), a wide linear range i.e. (1-100 µM) and (100-200 µM) with excellent correlations (i.e. R2 = 0.999 and R2 = 1.000, respectively) and very low limit of detection (LOD = 0.145 µM) and limit of quantification (LOQ = 0.482 µM) based on S/N = 3 and 10, respectively. The applicability of the prepared sensor for real sample analysis was tested by the determination of dopamine in human urine in pH 7.0 PBS showing an approximately 100% recovery with RSD < 2% inferring both the practicability and reliability of CS/N,GQDs@SPCE. The proposed sensor is endowed with high reproducibility (i.e. RSD = ca. 3.61%), excellent repeatability (i.e. ca. 0.91% current change) and a long-term stability (i.e. ca. 94.5% retained activity).
Collapse
|
28
|
Jin L, Wang Y, Liu F, Yu S, Gao Y, Zhang J. The determination of nitrite by a graphene quantum dot fluorescence quenching method without sample pretreatment. LUMINESCENCE 2017; 33:289-296. [DOI: 10.1002/bio.3412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Li Jin
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Ying Wang
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Fangtong Liu
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Shihua Yu
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Yan Gao
- Center of Analysis and Measurement; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| | - Jianpo Zhang
- School of Chemical and Pharmaceutical Engineering; Jilin Institute of Chemical Technology; Jilin People's Republic of China
| |
Collapse
|
29
|
Wang H, Qian J, Ding F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J Mater Chem B 2017; 5:6986-7007. [DOI: 10.1039/c7tb01624g] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in the preparation and biomedical applications of engineered chitosan-based nanogels has been comprehensively reviewed.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Fuyuan Ding
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
30
|
Simultaneous detection of hydroquinone and catechol on electrochemical-activated glassy carbon electrode by simple anodic and cathodic polarization. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3426-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|