1
|
Duwadi A, Baldelli S. Evidence for Ion Association at the Gas-Liquid Interface of the Mixture of 1-Butyl-3-methylimidazolium Hexafluorophosphate and Benzonitrile: A Sum Frequency Generation Spectroscopy and Surface Tension Study. J Phys Chem B 2023; 127:3496-3504. [PMID: 37023246 DOI: 10.1021/acs.jpcb.3c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The gas-liquid interface for the mixtures of [BMIM][PF6] and benzonitrile is studied by sum frequency generation (SFG) spectroscopy and surface tension measurements as an important solute to reduce the viscosity of ionic liquids. Solvation of ionic compounds in bulk solvent is not necessarily the same as that at the surface due to the lower dielectric medium at the air/liquid interface. The results from the temperature-dependent SFG spectroscopy and surface tension study suggest that the ionic liquid in a benzonitrile solvent is associated as ion pairs at the surface rather than as dissociated─solvated─ions in the bulk solution. The influence of ionic liquids on the surface structure of benzonitrile is investigated from 0 to 1.0 mole fraction of benzonitrile. The CH stretching mode of vibration of benzonitrile in the SFG spectrum begins from a 0.2 mole fraction (x) of benzonitrile, and the intensity of the peak constantly increases on increasing the concentration of benzonitrile. However, the addition of benzonitrile does not result in extra peaks or shifting of the peak frequency to the spectra of [BMIM][PF6]. The surface tension measurements further support the presence of benzonitrile at the gas-liquid interface. The surface tension data of the mixture smoothly decrease as the benzonitrile concentration increases. The apparent tilt angle of the terminal methyl group of the cation of [BMIM][PF6] is calculated from SFG polarization spectra and shows an apparent lowering with the addition of benzonitrile. The effect of temperature on the surface structure of the binary mixture is also reported at four different temperatures between -15 and 40 °C for both the SFG spectroscopy and surface tension study. Benzonitrile shows different behavior in the mixture at higher temperatures than pure benzonitrile, as observed in the SFG spectra. In contrast, it does not show any CN peak in the mixture below 0.9 mole fraction. The temperature dependence of the interfacial tension is used to evaluate thermodynamic functions such as surface entropy and surface enthalpy. Both were found to be lowered with the increasing concentration of benzonitrile. Both spectroscopic and thermodynamic analyses indicate that the ionic liquid is highly associated as ion pairs and the benzonitrile is more ordered at the surface at concentration <0.4×.
Collapse
Affiliation(s)
- Anjeeta Duwadi
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Steven Baldelli
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
2
|
Ueda H, Yoshimoto S. Multi-Redox Active Carbons and Hydrocarbons: Control of their Redox Properties and Potential Applications. CHEM REC 2021; 21:2411-2429. [PMID: 34128316 DOI: 10.1002/tcr.202100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Precise control over redox properties is essential for high-performance organic electronic devices such as organic batteries, electrochromic devices, and information storage devices. In this context, multi-redox active carbons and hydrocarbons, represented as Cx Hy molecules (x≥1, y≥0), are highly sought after, because they can switch between multiple redox states. Herein, we outline the redox properties of Cx Hy molecules as solutes and adsorbed species. Furthermore, the limitations of evaluating their redox properties and the possible solutions are summarized. Additionally, the theoretical capacity (mAh/g) and gravimetric energy density (Wh/kg) of secondary batteries were estimated based on the redox properties of 185 Cx Hy molecules, which have primarily been reported in the last decade. Among them, seven Cx Hy molecules were found to have the potential to surpass the energy density of LiNi0.6 Mn0.2 Co0.2 O2 /graphite batteries. The use of Cx Hy molecules in multielectrochromic devices and multi-bit memory is also explained. We believe that this review will encourage further utilization of Cx Hy molecules thereby promoting its applications in organic electronic devices.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Soichiro Yoshimoto
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
3
|
Atifi A, Baek DL, Fox RV. Electrodeposition of Dysprosium in pyrrolidinium triflate ionic liquid at ambient temperature: Unraveling system efficiency and impact of solvation interplays on the reduction process. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Atifi A, Mak PJ, Ryan MD. Ion Pairing versus Solvation of Dinitrobenzene Anions in Room-Temperature Ionic Liquids (RTILs): Vibrational Signatures of RTIL–Substrate Interactions. J Phys Chem A 2020; 124:10225-10238. [DOI: 10.1021/acs.jpca.0c06267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abderrahman Atifi
- Chemistry Department, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Piotr J. Mak
- Chemistry Department, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Michael D. Ryan
- Chemistry Department, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
5
|
Voltammetry and Spectroelectrochemistry of TCNQ in Acetonitrile/RTIL Mixtures. Molecules 2020; 25:molecules25020303. [PMID: 31940892 PMCID: PMC7024151 DOI: 10.3390/molecules25020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 12/03/2022] Open
Abstract
Understanding the solvation and ion-pairing interactions of anionic substrates in room-temperature ionic liquids (RTIL) is key for the electrochemical applications of these new classes of solvents. In this work, cyclic voltammetry and visible and infrared spectroelectrochemistry of tetracyanoquinodimethane (TCNQ) was examined in molecular (acetonitrile) and RTIL solvents, as well as mixtures of these solvents. The overall results were consistent with the formation of RTIL/acetonitrile nanodomains. The voltammetry indicated that the first electrogenerated product, TCNQ−, was not incorporated into the RTIL nanodomain, while the second electrogenerated product, TCNQ2−, was strongly attracted to the RTIL nanodomain. The visible spectroelectrochemistry was also consistent with these observations. Infrared spectroelectrochemistry showed no discrete ion pairing between the cation and TCNQ− in either the acetonitrile or RTIL solutions. Discrete ion pairing was, however, observed in the acetonitrile domain between the tetrabutylammonium ion and TCNQ2−. On the other hand, no discrete ion pairing was observed in BMImPF6 or BMImBF4 solutions with TCNQ2−. In BMImNTf2, however, discrete ion pairs were formed with BMIm+ and TCNQ2−. Density function theory (DFT) calculations showed that the cations paired above and below the aromatic ring. The results of this work support the understanding of the redox chemistry in RTIL solutions.
Collapse
|
6
|
Atifi A, Mak PJ, Ryan MD. Proton-coupled reduction of an iron nitrosyl porphyrin in the protic ionic liquid nanodomain. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Minois P, Bayardon J, Meunier-Prest R, Jugé S. [60]Fullerene l-Amino Acids and Peptides: Synthesis under Phase-Transfer Catalysis Using a Phosphine–Borane Linker. Electrochemical Behavior. J Org Chem 2017; 82:11358-11369. [DOI: 10.1021/acs.joc.7b01737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pauline Minois
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB-UMR 6302), BP 47870, Université de Bourgogne-Franche-Comté, 9 avenue A. Savary, Dijon 21078 Cedex, France
| | - Jérôme Bayardon
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB-UMR 6302), BP 47870, Université de Bourgogne-Franche-Comté, 9 avenue A. Savary, Dijon 21078 Cedex, France
| | - Rita Meunier-Prest
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB-UMR 6302), BP 47870, Université de Bourgogne-Franche-Comté, 9 avenue A. Savary, Dijon 21078 Cedex, France
| | - Sylvain Jugé
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB-UMR 6302), BP 47870, Université de Bourgogne-Franche-Comté, 9 avenue A. Savary, Dijon 21078 Cedex, France
| |
Collapse
|
8
|
Atifi A, Ryan MD. Altering the Coordination of Iron Porphyrins by Ionic Liquid Nanodomains in Mixed Solvent Systems. Chemistry 2017; 23:13076-13086. [PMID: 28742232 DOI: 10.1002/chem.201701540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 11/07/2022]
Abstract
The solvent environment around iron porphyrin complexes was examined using mixed molecular/RTIL (room temperature ionic liquid) solutions. The formation of nanodomains in these solutions provides different solvation environments for substrates that could have significant impact on their chemical reactivity. Iron porphyrins (Fe(P)), whose properties are sensitive to solvent and ligation changes, were used to probe the molecular/RTIL environment. The addition of RTILs to molecular solvents shifted the redox potentials to more positive values. When there was no ligation change upon reduction, the shift in the E° values were correlated to the Gutmann acceptor number, as was observed for other porphyrins with similar charge changes. As %RTIL approached 100 %, there was insufficient THF to maintain coordination and the E° values were much more dependent upon the %RTIL. In the case of FeIII (P)(Cl), the shifts in the E° values were driven by the release of the chloride ion and its strong attraction to the ionic liquid environment. The spectroscopic properties and distribution of the FeII and FeI species into the RTIL nanodomains were monitored with visible spectroelectrochemistry, 19 F NMR and EPR spectroscopy. This investigation shows that coordination and charge delocalization (metal versus ligand) in the metalloporphyrins redox products can be altered by the RTIL fraction in the solvent system, allowing an easy tuning of their chemical reactivity.
Collapse
Affiliation(s)
| | - Michael D Ryan
- Marquette University, PO Box 1881, Milwaukee, WI, 53201, USA
| |
Collapse
|
9
|
Choi J, Benedetti TM, Jalili R, Walker A, Wallace GG, Officer DL. High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO2 Reduction. Chemistry 2016; 22:14158-61. [PMID: 27464300 DOI: 10.1002/chem.201603359] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/11/2022]
Abstract
The efficient and selective catalytic reduction of CO2 is a highly promising process for both of the storage of renewable energy as well as the production of valuable chemical feedstocks. In this work, we show that the addition of an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, in an aprotic electrolyte containing a proton source and FeTPP, promotes the in situ formation of the [Fe(0) TPP](2-) homogeneous catalyst at a less negative potential, resulting in lower overpotentials for the CO2 reduction (670 mV) and increased kinetics of electron transfer. This co-catalysis exhibits high Faradaic efficiency for CO production (93 %) and turnover number (2 740 000 after 4 hour electrolysis), with a four-fold increase in turnover frequency (TOF) when compared with the standard system without the ionic liquid.
Collapse
Affiliation(s)
- Jaecheol Choi
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tania M Benedetti
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rouhollah Jalili
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ashley Walker
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - David L Officer
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
10
|
Ueda H, Nishiyama K, Yoshimoto S. Electrochemical stability of C60 thin film supported on a Au(111) electrode at a pyrrolidinium-based ionic liquid interface. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|