1
|
Yan L, Liu Y, Hou J. High-Efficiency Oxygen Reduction Reaction Revived from Walnut Shell. Molecules 2023; 28:2072. [PMID: 36903323 PMCID: PMC10003918 DOI: 10.3390/molecules28052072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
The development of inexpensive and efficient electrocatalysts for oxygen reduction reactions (ORR) remains a challenge with respect to renewable energy technologies. In this research, a porous, nitrogen-doped ORR catalyst is prepared using the hydrothermal method and pyrolysis with walnut shell as a biomass precursor and urea as a nitrogen source. Unlike past research, in this study, urea is not directly doped; instead, a new type of doping is carried out after annealing at 550 °C. In addition, the sample's morphology and structure are analyzed and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). A CHI 760E electrochemical workstation is used to test NSCL-900's performance in terms of oxygen reduction electrocatalysis (ORR). It has been found that the catalytic performance of NSCL-900 is significantly improved compared with that of NS-900 without urea doping. In a 0.1 mol/L KOH electrolyte, the half-wave potential can reach 0.86 V (vs. RHE) and the initial potential is 1.00 V (vs. RHE). The catalytic process is close to four-electron transfer and there are large quantities of pyridine nitrogen and pyrrole nitrogen.
Collapse
Affiliation(s)
- Lei Yan
- School of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China
| | - Yuchen Liu
- School of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China
| | - Junhua Hou
- School of Physics and Information Engineering, Shanxi Normal University, No. 339 Taiyu Road, Xiaodian District, Taiyuan 030031, China
- Extreme Optical Collaborative Innovation Center, Shanxi University, No. 92, Wucheng Road, Xiaodian District, Taiyuan 030006, China
- Modern College of Humanities and Sciences, Shanxi Normal University, No. 501 Binhe West Road, Yaodu District, Linfen 041000, China
| |
Collapse
|
2
|
Iradukunda Y, Wang G, Li X, Shi G, Albashir AIM, Dusengemungu L, Hu Y, Luo F, Yi K, Niu X, Wu Z. Multifunctional flexible porous liquefied bio-carbon nanofibers prepared from the combination of mangosteen (Garcinia mangostana) peels and monohydroxybenzene for supercapacitors applications. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Zhang Y, Sun Y, Cai Z, You S, Li X, Zhang Y, Yu Y, Ren N, Zou J. Stable CuO with variable valence states cooperated with active Co 2+ as catalyst/co-catalyst for oxygen reduction/methanol oxidation reactions. J Colloid Interface Sci 2021; 593:345-358. [PMID: 33744543 DOI: 10.1016/j.jcis.2021.02.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 01/27/2023]
Abstract
Catalysts/co-catalysts for cathodic oxygen reduction and anodic methanol oxidation reactions (ORR/MOR) play the major roles in promoting the commercialization of direct methanol fuel cells. Herein, bimetallic zeolite-imidazolate-frameworks (CoZn-ZIFs) is used as precursor to synthesize Co3O4@NPC/CuO composites as catalysts for ORR and Pt supports/co-catalysts for MOR. The ORR activity (E1/2 = 0.83 V) and long-term stability (activity retention of 85.5% after 30,000 s) of Co3O4@NPC/CuO-400 (400 °C) dodecahedron are better than those of commercial Pt/C (10 wt%) in alkaline electrolytes. The surface CuO with variable valence states (Cu0 and Cu2+) can be used as both the active component for ORR and the protective layer for Co3O4 to enhance catalytic stability. Partial removal of CoOx from carbon framework promotes the exposure of highly active sites (Co2+) on the Co3O4. For MOR, the mass activity of Pt-Co3O4@NPC/CuO-400 (5 wt%) (1947 mA mgPt-1) is much higher than that of Pt/C (751 mA mgPt-1), mainly attributing to that the Pt active sites are uniformly dispersed on Co3O4@NPC/CuO support. The strong interaction between Pt and CuO can reduce the bond strength of Pt-CO to enhance CO resistance. Co3O4 can activate H2O molecules to provide sufficient OH- species to promote MOR. This study provides a new idea for preparation of active ORR catalysts and MOR co-catalyst from bimetallic ZIFs.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yubo Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhuang Cai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xuerui Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yanhong Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Yang Yu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
4
|
Optimization Strategies of Preparation of Biomass-Derived Carbon Electrocatalyst for Boosting Oxygen Reduction Reaction: A Minireview. Catalysts 2020. [DOI: 10.3390/catal10121472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oxygen reduction reaction (ORR) has attracted considerable attention for clean energy conversion technologies to reduce traditional fossil fuel consumption and greenhouse gas emissions. Although platinum (Pt) metal is currently used as an electrocatalyst to accelerate sluggish ORR kinetics, the scarce resource and high cost still restrict its further scale-up applications. In this regard, biomass-derived carbon electrocatalysts have been widely adopted for ORR electrocatalysis in recent years owing to their tunable physical/chemical properties and cost-effective precursors. In this minireview, recent advances of the optimization strategies in biomass-derived carbon electrocatalysts towards ORR have been summarized, mainly focusing on the optimization of pore structure and active site. Besides, some current challenges and future perspectives of biomass-derived carbon as high-performance electrocatalysts for ORR have been also discussed in detail. Hopefully, this minireview will afford a guideline for better design of biomass-derived carbon electrocatalysts for ORR-related applications.
Collapse
|
5
|
Karajagi I, Ramya K, Ghosh PC, Sarkar A, Rajalakshmi N. Co-doped carbon materials synthesized with polymeric precursors as bifunctional electrocatalysts. RSC Adv 2020; 10:35966-35978. [PMID: 35517101 PMCID: PMC9056983 DOI: 10.1039/d0ra07100e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/19/2020] [Indexed: 12/28/2022] Open
Abstract
The design of stable and high performance metal free bifunctional electrocatalysts is a necessity in alkaline zinc–air batteries for oxygen reduction and evolution reaction. In the present work co-doped carbon materials have been developed from polymeric precursors with abundant active sites to achieve bifunctional activity. A 3-dimensional microporous nitrogen–carbon (NC) and co-doped nitrogen–sulfur–carbon (NSC) and nitrogen–phosphorus–carbon (NPC) were synthesized using poly(2,5-benzimidazole) as an N containing precursor. The obtained sheet like structure shows outstanding ORR and OER performance in alkaline systems with excellent stability compared to Pt/C catalyst. The doped heteroatom in the carbon is expected to have redistributed the charge around heteroatom dopants lowering the ORR potential and modifying the oxygen chemisorption mode thereby weakening the O–O bonding and improving the ORR activity and overall catalytic performance. The bifunctional activity (ΔE = Ej=10 − E1/2) of an air electrode for NPC, NSC, NC and Pt/C is 0.82 V, 0.87 V, 1.06 V and 1.03 V respectively, and the NPC value is smaller than most of the reported metal and non-metal based electrocatalysts. The ORR (from onset potential) and OER (10 mA cm−2) overpotential for NPC, NSC, and NC is (290 mV, 410 mV), (310 mV, 450 mV) and (340 mV, 600 mV) respectively. In the prepared catalyst the NPC exhibited higher ORR and OER activity (NPC > NSC > NC). The doping of P in NPC is found to have a great influence on the microstructure and therefore on the ORR and OER activity. Metal free bifunctional catalysts based on co-doped carbon materials synthesized from polymeric precursors via a simple pyrolysis route with high cyclic stability and low polarization for Zn–air batteries.![]()
Collapse
Affiliation(s)
- Imran Karajagi
- Centre for Fuel Cell Technology (CFCT), International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) 2nd Floor, IIT-M Research Park, Block E, 6 Kanagam Road, Taramani Chennai - 600113 India .,Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay Powai Mumbai - 400076 India
| | - K Ramya
- Centre for Fuel Cell Technology (CFCT), International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) 2nd Floor, IIT-M Research Park, Block E, 6 Kanagam Road, Taramani Chennai - 600113 India
| | - P C Ghosh
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay Powai Mumbai - 400076 India
| | - A Sarkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay Powai Mumbai - 400076 India
| | - N Rajalakshmi
- Centre for Fuel Cell Technology (CFCT), International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) 2nd Floor, IIT-M Research Park, Block E, 6 Kanagam Road, Taramani Chennai - 600113 India
| |
Collapse
|
6
|
Tyagi A, Kar KK, Yokoi H. Atomically dispersed Ni/NixSy anchored on doped mesoporous networked carbon framework: Boosting the ORR performance in alkaline and acidic media. J Colloid Interface Sci 2020; 571:285-296. [DOI: 10.1016/j.jcis.2020.03.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
|
7
|
Guo S, Guo B, Ma R, Zhu Y, Wang J. KOH activation of coal-derived microporous carbons for oxygen reduction and supercapacitors. RSC Adv 2020; 10:15707-15714. [PMID: 35493673 PMCID: PMC9052605 DOI: 10.1039/d0ra01705a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/15/2020] [Indexed: 11/21/2022] Open
Abstract
Due to the dilemma of rapid consumption of fossil fuels and environmental pollution, development of clean, efficient and renewable energy conversion and storage technology has become an urgent need. Supercapacitors and hydrogen-oxygen fuel cells as typical representatives have become the focus of scientific research, in which the electrode materials are of much importance to their improved activity. In this work, a series of porous carbons (PCs) with high specific surface areas were prepared using natural coals as carbon precursors coupled with KOH activation. The effects of the mass ratio of coal and KOH as well as different activation temperatures on the microstructures of the PCs and electrochemical properties were studied in detail. The optimal PC4 (KOH: coal = 4) possessed a high specific surface area (SSA) of 2092 m2 g-1 and a well-developed microporous structure. As the electrocatalyst, it exhibited a positive onset potential of 0.88 V (vs. reversible hydrogen electrode (RHE)) and half-wave potential of 0.78 V (vs. RHE) towards the oxygen reduction reaction (ORR) in an alkaline solution. PC4 also showed the highest specific capacitance of 128 F g-1 at a current density of 0.5 A g-1 among all the samples in this work. The relatively good performance of PC4 resulted from its well-developed microporous structure and large SSA, enabling fast mass transfer of electrolytes.
Collapse
Affiliation(s)
- Shaokui Guo
- School of Materials Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Beibei Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Ruguang Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Yufang Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Jiacheng Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
8
|
Nazem MA, Zare MH, Shirazian S. Preparation and optimization of activated nano-carbon production using physical activation by water steam from agricultural wastes. RSC Adv 2020; 10:1463-1475. [PMID: 35494676 PMCID: PMC9047251 DOI: 10.1039/c9ra07409k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/28/2019] [Indexed: 11/21/2022] Open
Abstract
Production of activated nano-carbon from agricultural wastes was studied in this work. To obtain the optimum production conditions by a physical activation method, influence of temperature (850, 900, 950 and 1000 °C), activation residence time (30, 60 and 90 min), and mill rotation (200, 300 and 400 rpm) were investigated using three different raw materials including walnut, almond and pistachio shells. To prepare activated nano-carbon, all the samples were heated up to the final activation temperature under a continuous steam flow of 130 cm3 min−1, and at a heating rate of 3 °C min−1, and were held at the different activation temperatures for 30, 60 and 90 minutes. BET surface area of the obtained activated carbons was measured from nitrogen adsorption data in the relative pressure range between 0 to 1. Activated nano-carbon standard indexes were evaluated according to the ASTM standard and the samples were compared. First, the cellulose raw material was heated in the carbonization furnace at 600 °C and then activated in the advanced activation furnace at a temperature between 850 to 1000 °C for 30, 60 and 90 minutes with water vapor. Ash percentage, iodine content, moisture content, specific area, elemental analysis, and FESEM were used for product characterization. The results of the analysis showed that by using the water vapor physical activation method and optimizing the parameters of this process including time and rotation of the mill up to 10 min and 400 rpm, resulted in a significant increase in specific surface area, cavity volume and the iodine number of the final product. Production of activated nano-carbon from agricultural wastes was studied in this work.![]()
Collapse
Affiliation(s)
- Mohammad Amin Nazem
- Department of Chemical Engineering
- College of Engineering
- University of Isfahan
- Isfahan
- Iran
| | - Masoud Habibi Zare
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Saeed Shirazian
- Department for Management of Science and Technology Development
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
9
|
Yu J, Wang Y, Zhu L, Jiang H, Hao J, Zhang Y, Liu M, Li J, Ji X, Li W. Chirality Induces the Self-Assembly To Generate a 3D Porous Spiral-like Polyhedron as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45596-45605. [PMID: 31714055 DOI: 10.1021/acsami.9b14775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The sluggish kinetics and large overpotential of the oxygen reduction reaction (ORR) severely limit the widespread production and application of metal-air batteries. Herein, a conductive three-dimensional (3D) porous spiral-like polyhedron structure composed of nitrogen-doped carbon nanosheets (L/D-SPNC) was utilized as catalysts with combination of 3D hierarchical porous properties and distinguishing intrinsic properties of two-dimensional (2D) nanosheets for ORR. The chiral template, l/d-tartaric acid, induces the self-assembly of the supramolecule and the formation of an orderly array of carbon with spiral-like surface feature on a molecular scale. The resulting L/D-SPNC exhibits a small wall thickness (2.5 nm), large specific surface area (2034.2 m2/g), and high conductivity (155.76 S/m), which indicates that the properties of 2D nanosheets building blocks are kept in 3D mode. As catalysts for ORR, the optimized L-SPNC-950-1 exhibits a more positive onset potential of 1.03 V compared with those of Pt/C (1.00 V) and a half-wave potential of 0.87 V is also comparable to those of Pt/C (0.87 V). Al-air battery discharge data demonstrate that the spiral-like structure facilitates the diffusion of the electrolyte and oxygen on a three-phase interface, causing weak polarization. Density functional theory (DFT) calculations prove that the twisted surface aggravates the differential charge distribution between C-C/C-N bonds.
Collapse
|
10
|
Pandey AK, Pal T, Sharma R, Kar KK. Study of matrix–filler interaction through correlations between structural and viscoelastic properties of carbonous‐filler/polymer‐matrix composites. J Appl Polym Sci 2019. [DOI: 10.1002/app.48660] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alok K. Pandey
- Advanced Nanoengineering Materials Laboratory, Materials Science ProgrammeIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Tanvi Pal
- Advanced Nanoengineering Materials Laboratory, Materials Science ProgrammeIndian Institute of Technology Kanpur Kanpur 208016 India
- A.P.J. Abdul Kalam Technical University Lucknow 226031 India
| | - Raghunandan Sharma
- Advanced Nanoengineering Materials Laboratory, Department of Mechanical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Kamal K. Kar
- Advanced Nanoengineering Materials Laboratory, Materials Science ProgrammeIndian Institute of Technology Kanpur Kanpur 208016 India
- Advanced Nanoengineering Materials Laboratory, Department of Mechanical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
11
|
Ye W, Tang J, Wang Y, Cai X, Liu H, Lin J, Van der Bruggen B, Zhou S. Hierarchically structured carbon materials derived from lotus leaves as efficient electrocatalyst for microbial energy harvesting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:865-874. [PMID: 30818210 DOI: 10.1016/j.scitotenv.2019.02.300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Developing a highly efficient, cost-effective, easily scalable and sustainable cathode for oxygen reduction reaction (ORR) is a crucial challenge in terms of future "green" energy conversion technologies, e.g., microbial fuel cells (MFCs). In this study, a natural and widely available lotus leaf with intrinsically hierarchical structure was employed to serve as the single precursor to prepare the catalyst applied as the MFC cathode. The hierarchically particle-coated bio‑carbon was self-constructed from the lotus leaf, which yielded a large specific surface area, highly porous structure and superhydrophobicity via facile pyrolysis coupling hydrothermal activation by ZnCl2/(NH4)2SO4. Electrochemical evaluation demonstrated that these natural leaf-derived carbons have an efficient ORR activity. Specifically, the HC-900 catalyst with hydrothermal activation achieved an onset potential of -0.015 V vs. Ag/AgCl, which was comparable to the commercial Pt/C catalyst (-0.010 V vs. Ag/AgCl) and was more efficient than the DC-900 catalyst through direct pyrolysis. Furthermore, the HC-900 catalyst achieved an outstanding ORR activity via a one-step and four-electron pathway, exhibiting a potential alternative to Pt/C as electrocatalyst in ORR, due to its better long-term durability and methanol resistance. Additionally, the HC-900 catalyst was applied as an effective electrocatalytic cathode in an MFC system with a maximum power density of 511.5 ± 25.6 mW⋅m-2, exhibiting a superior energy harvesting capacity to the Pt/C cathode.
Collapse
Affiliation(s)
- Wenyuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xixi Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongwei Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiuyang Lin
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, School of Environment and Resources, Qi Shan Campus, Fuzhou University, No. 2 Xueyuan Road, University Town, 350116 Fuzhou, Fujian, China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Zhang Z, Yang S, Li H, Zan Y, Li X, Zhu Y, Dou M, Wang F. Sustainable Carbonaceous Materials Derived from Biomass as Metal-Free Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805718. [PMID: 30589116 DOI: 10.1002/adma.201805718] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 06/09/2023]
Abstract
Although carbon is the second most abundant element in the biosphere, a large proportion of the available carbon resources in biomass from agriculture, stock farming, ocean fisheries, and other human activities is currently wasted. The use of sustainable carbonaceous materials as an alternative to precious metals in electrocatalysis is a promising pathway for transforming sustainable biomass resources into sustainable energy-conversion systems. The development of rational syntheses of metal-free carbonaceous catalysts derived from sustainable biomass has therefore become a topic of significant interest in materials chemistry. However, great efforts are still required to develop methods that are low cost, scalable, and environmentally friendly and which afford carbonaceous materials having an electrocatalytic performance comparable to, or even better than, existing precious metal catalysts. Herein, recent achievements in developing metal-free carbonaceous catalysts based on biomass are reviewed and discussed and the critical issues which still need to be addressed are highlighted. The focus is on representative synthesis and optimization strategies applicable to different kinds of biomass, as well as studies of the physicochemical structure and electrochemical performance of the resulting metal-free carbonaceous catalysts. Finally, some guidelines for the future development of this important area are provided.
Collapse
Affiliation(s)
- Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shaoxuan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hanyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yongxi Zan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xueyan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Meiling Dou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
13
|
Borghei M, Lehtonen J, Liu L, Rojas OJ. Advanced Biomass-Derived Electrocatalysts for the Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703691. [PMID: 29205520 DOI: 10.1002/adma.201703691] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Indexed: 05/25/2023]
Abstract
Recent progress in advanced nanostructures synthesized from biomass resources for the oxygen reduction reaction (ORR) is reviewed. The ORR plays a significant role in the performance of numerous energy-conversion devices, including low-temperature hydrogen and alcohol fuel cells, microbial fuel cells, as well as metal-air batteries. The viability of such fuel cells is strongly related to the cost of the electrodes, especially the cathodic ORR electrocatalyst. Hence, inexpensive and abundant plant and animal biomass have become attractive options to obtain electrocatalysts upon conversion into active carbon. Bioresource selection and processing criteria are discussed in light of their influence on the physicochemical properties of the ORR nanostructures. The resulting electrocatalytic activity and durability are introduced and compared to those from conventional Pt/C-based electrocatalysts. These ORR catalysts are also active for oxygen or hydrogen evolution reactions.
Collapse
Affiliation(s)
- Maryam Borghei
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Janika Lehtonen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Liang Liu
- Department of Bioengineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| |
Collapse
|
14
|
Zhu C, Yang B, Zhang Y, Sheng Y, Yin C, Du Z, Zhao J, Huang W. High-Level Pyrrolic/Pyridinic N-Doped Carbon Nanoflakes from π-Fused Polyimide for Anodic Lithium Storage. ChemistrySelect 2017. [DOI: 10.1002/slct.201701552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caixia Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Bing Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Yanni Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Yongjian Sheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Chengrong Yin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Zhuzhu Du
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P.R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications; Nanjing 210023 P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211816 P.R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing University of Posts and Telecommunications; Nanjing 210023 P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE); Northwestern Polytechnical University (NPU); 127 West Youyi Road Xi'an 710072, Shaanxi China
| |
Collapse
|
15
|
Jiang H, Li C, Shen H, Liu Y, Li W, Li J. Supramolecular gel-assisted synthesis Co 2 P particles anchored in multielement co-doped graphene as efficient bifunctional electrocatalysts for oxygen reduction and evolution. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.074] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zhao J, Chen K, Yang B, Zhang Y, Zhu C, Li Y, Zhang Q, Xie L, Huang W. Surficial nanoporous carbon with high pyridinic/pyrrolic N-Doping from sp3/sp2-N-rich azaacene dye for lithium storage. RSC Adv 2017. [DOI: 10.1039/c7ra07850a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dye to carbon: Two rationally designed pyridinic/pyrrolic N-doped porous carbons as anodic materials could be achieved by carbonizing π-conjugated azaacene dye born with high ratio sp3/sp2-N.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| | - Kai Chen
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| | - Bing Yang
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| | - Yanni Zhang
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| | - Caixia Zhu
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| | - Yinxiang Li
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Qichun Zhang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Linghai Xie
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
| |
Collapse
|