1
|
Ali S, Hassan H, Iqbal MW, Afzal AM, Amin MA, Alhadrami A, Alqarni ND, Umar E. Analyzing synthesis routes for BaCuPO 4: implications for hydrogen evolution and supercapattery performance. RSC Adv 2023; 13:35468-35480. [PMID: 38058556 PMCID: PMC10696637 DOI: 10.1039/d3ra07596f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
In recent years, energy storage and conversion tools have evolved significantly in response to rising energy demands. Owing to their large surface area, superior electric and chemical stabilities, and thermal conductivities, barium copper phosphate (BaCuPO4) materials are promising electrode materials for electrochemical energy storage systems. In this study, the synthesis of nanostructures (NSs) using hydrothermal and chemical precipitation methods and exploring the electrochemical characteristics of BaCuPO4 in asymmetric supercapacitors provides a comparative investigation. Systematic characterization shows that nanomaterials prepared by applying the hydrothermal method have a more crystalline and large surface area than chemical precipitation. In the three cell arrangements, the hydrothermally prepared BaCuPO4 NSs delivered a high specific capacity (764.4 C g-1) compared to the chemical precipitation route (660 C g-1). Additionally, the supercapattery associated with the two electrode assemblages delivers an optimum specific capacity of 77 C g-1. The energy and power density of BaCuPO4//AC NSs were 52.13 W h kg-1 and 950 W kg-1, respectively. A durability test was also performed with BaCuPO4//AC NSs for 5000 consecutive cycles. Further, the coulombic efficiency and capacity retention of BaCuPO4//AC after 5000 cycles were 81% and 92%, respectively. Bimetallic phosphate is comparatively suggested for future perspectives towards HER to overcome the performance of single metal phosphate materials. This is the first approach, we are aware of, for investigating the electrochemical behavior of BaCuPO4, and our results suggest that it may be useful as an electrode material in electrochemical systems requiring high energy and rate capabilities.
Collapse
Affiliation(s)
- Sarfraz Ali
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Haseebul Hassan
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | | | - Amir Muhammad Afzal
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif Saudi Arabia
| | - A Alhadrami
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif Saudi Arabia
| | - Nawal D Alqarni
- Department of Chemistry, College of Science, University of Bisha Bisha 61922 Saudi Arabia
| | - Ehtisham Umar
- Department of Physics, Government College University Lahore 54000 Punjab Pakistan
| |
Collapse
|
2
|
Naveenkumar P, Maniyazagan M, Yesuraj J, Yang HW, Kang N, Kim K, Kalaignan GP, Kang WS, Kim SJ. Electrodeposited MnS@Ni(OH)2 core-shell hybrids as an efficient electrode materials for symmetric supercapacitor applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
Li K, Zheng K, Zhang Z, Li K, Bian Z, Xiao Q, Zhao K, Li H, Cao H, Fang Z, Zhu Y. Three-dimensional graphene encapsulated hollow CoSe 2-SnSe 2nanoboxes for high performance asymmetric supercapacitors. NANOTECHNOLOGY 2022; 33:165602. [PMID: 34986468 DOI: 10.1088/1361-6528/ac487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1at 0.5 A g-1, good rate capability of 212.7 F g-1at 10 A g-1The capacitance retention rate is 80% at 2 A g-1after 5000 cycles due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1at 1 A g-1and an energy density of 11.89 Wh kg-1at 749.9 W kg-1, as well as excellent cycle stability. This work provides a new method for preparing electrode material.
Collapse
Affiliation(s)
- Kainan Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Zhifang Zhang
- Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Kuan Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Ziyao Bian
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Qian Xiao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Kuangjian Zhao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Haijing Cao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Zebo Fang
- Department of Physics, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Yanyan Zhu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| |
Collapse
|
4
|
Li X, Li P, Wei F, Wang X, Han W, Yue J. Effect of oxygen vacancies on the electronic structure and electrochemical performance of MnMoO 4: computational simulation and experimental verification. NEW J CHEM 2022. [DOI: 10.1039/d1nj05085k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous nanopetals of MnMoO4 with oxygen vacancies (MnMoO4–OV) were synthesized and deliver preferable energy storage performance.
Collapse
Affiliation(s)
- Xiaoli Li
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| | - Pengxi Li
- Purification Equipment Research Institute of CSSC, Handan, 056027, China
| | - Fangfang Wei
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| | | | - Weiwen Han
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| | - Jiang Yue
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056027, China
| |
Collapse
|
5
|
Baig MM, Gul IH, Baig SM, Shahzad F. 2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors – A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115920] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Xiao H, Ma Y, Xu M, Liu R, Li X, Wang X, Wang Y, Liu Y, Yuan G. Constructing nickel cobaltate @nickel-manganese layered double hydroxide hybrid composite on carbon cloth for high-performance flexible supercapacitors. J Colloid Interface Sci 2021; 611:149-160. [PMID: 34952269 DOI: 10.1016/j.jcis.2021.12.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Abstract
Flexible supercapacitors have received considerable interest owing to their potential application in wearable electronics. Designing subtle hybridization of active materials and constructing smart electrode architectures are effective strategies for developing high-performance flexible supercapacitors. Herein, a hierarchically hybrid electrode is engineered by integrating nanoneedle-like structural NiCo2O4 and NiMn layered double hydroxide (NiMn-LDH) composite on highly conductive carbon cloth (CC). This architecture can endow abundant active sites, rapid electron collection pathways and efficient ion transport channels. The resultant hybrid electrode delivers high areal capacitance of 4010.4 mF cm-2, excellent cyclic stability and good rate performance. Furthermore, by pairing with an activated carbon (AC)/CC anode, a flexible solid-state asymmetric supercapacitor (ASC) is assembled, which exhibits the high areal energy/power density of 0.78 mWh cm-2/40.4 mW cm-2 and superior capacitive stability at bending deformation. Meanwhile, the assembled ASC possesses outstanding cycling stability with 97.7% capacitance retention after 10,000 cycles. This work presents the effects of rational design of hybrid electrode with high electrochemical properties and flexibility, holding great potential for flexible energy storages.
Collapse
Affiliation(s)
- Huanhao Xiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yu Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Ming Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Rong Liu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, PR China.
| | - Xiaolong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Xue Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yuanming Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yang Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Guohui Yuan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
7
|
Li R, Bai Z, Hou W, Qiao J, Sun W, Bai Y, Wang Z, Sun K. Spinel-type bimetal sulfides derived from Prussian blue analogues as efficient polysulfides mediators for lithium−sulfur batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Vijayakumar S, Dhakal G, Kim SH, Lee J, Lee YR, Shim JJ. Facile Synthesis of Zn-Co-S Nanostrip Cluster Arrays on Ni Foam for High-Performance Hybrid Supercapacitors. NANOMATERIALS 2021; 11:nano11123209. [PMID: 34947557 PMCID: PMC8706522 DOI: 10.3390/nano11123209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022]
Abstract
Mixed metal sulfides exhibit outstanding electrochemical performance compared to single metal sulfides and mixed metal oxides because of their richer redox reactions and high electronic conductivity. In the present study, Zn-Co-S nanostrip cluster arrays were formed from ZnCo2O4 grown on Ni foam by an anion exchange reaction using a two-step hydrothermal process. Morphological characterization confirmed that the Zn-Co-S nanostrip cluster arrays had grown homogeneously on the skeleton of the 3D Ni foam. The length of the nanostrip was approximately 8 µm, and the width ranged from 600 to 800 nm. The Ni foam-supported Zn-Co-S nanostrip cluster arrays were assessed directly for electrochemical supercapacitor applications. Compared to ZnCo2O4, the Zn-Co-S electrode exhibited a three-fold higher specific capacity of 830 C g−1 at a specific current of 2.0 A g−1. The higher polarizability, lower electro-negativity, and larger size of the S2− ion played an important role in substituting oxygen with sulfur, which enhanced the performance. The Zn-Co-S//AC hybrid device delivered a maximum specific energy of 19.0 Wh kg−1 at a specific power of 514 W kg−1. The remarkable performance of Zn-Co-S nanostrip cluster arrays highlights their potential as a positive electrode for hybrid supercapacitor applications.
Collapse
Affiliation(s)
- Subbukalai Vijayakumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (S.V.); (G.D.); (J.L.); (Y.R.L.)
- Centre for Research and Post-Graduate Studies in Physics, Ayya Nadar Janaki Ammal College, Sivakasi 626124, India
| | - Ganesh Dhakal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (S.V.); (G.D.); (J.L.); (Y.R.L.)
| | - Soo-Hyun Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (S.V.); (G.D.); (J.L.); (Y.R.L.)
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (S.V.); (G.D.); (J.L.); (Y.R.L.)
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (S.V.); (G.D.); (J.L.); (Y.R.L.)
- Correspondence: ; Tel.: +82-53-810-2587
| |
Collapse
|
9
|
Sun X, Yang P, Wang S, Jin C, Ren M, Xing H. Fabrication of Nanoflower-like MCoP (M = Fe and Ni) Composites for High-Performance Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10403-10412. [PMID: 34436907 DOI: 10.1021/acs.langmuir.1c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elaborating the development of functional materials with excellent performance for supercapacitors is important in energy storage devices. In the present study, nanoflower-like MCoP (M = Ni and Fe) composites were successfully fabricated on Ni foam (denoted as NF@MCoP) by a cost-effective hydrothermal and low-temperature phosphating method. Simultaneously, the unique three-dimensional structure, nanoflower morphology, and the conductive substrate provide a favorable large electroactive area, shorter electron transfer distance, and rapid electron conductivity. The as-synthesized nanoflower-like MCoP composites exhibit outstanding energy density, power density, and long-term cycling stability. These results show that the developed electrode materials with excellent performance have great application prospects in the field of supercapacitor applications.
Collapse
Affiliation(s)
- Xiangfei Sun
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Ping Yang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Shaohua Wang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Congcong Jin
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Menglei Ren
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Honglong Xing
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| |
Collapse
|
10
|
Yuan Y, Jia H, Liu Z, Wang L, Sheng J, Fei W. A highly conductive Ni(OH) 2 nano-sheet wrapped CuCo 2S 4 nano-tube electrode with a core-shell structure for high performance supercapacitors. Dalton Trans 2021; 50:8476-8486. [PMID: 34047737 DOI: 10.1039/d1dt01075a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of microstructures and the optimum selection of electrode materials have substantial effects on the electrochemical performances of supercapacitors. A core-shell structured CuCo2S4@Ni(OH)2 electrode material was designed, with CuCo2S4 nanotubes as the core wrapped by interlaced Ni(OH)2 nano-sheets as the shell. The hydrothermal and electro-deposition processes were adopted to synthesize CuCo2S4@Ni(OH)2 materials. The CuCo2S4 nanotubes can both provide specific capacitance and act as a "superhighway" for electrons due to their highly conductive skeleton structure. The Ni(OH)2 nano-sheets will boost the electrochemically active sites and enhance the specific surface area. Meanwhile, the mutually restricted core-shell CuCo2S4@Ni(OH)2 electrode could regulate the volume deformation to improve its stability. The CuCo2S4@Ni(OH)2 electrode had a maximum specific capacitance of 2668.4 F g-1 at a current density of 1 A g-1 and a superior cycling stability of 90.3% after 10 000 cycles. Moreover, a CuCo2S4@Ni(OH)2//active carbon asymmetric supercapacitor with a maximum energy density of 44 W h kg-1 was assembled, suggesting that CuCo2S4@Ni(OH)2 is a successful binder-free electrode material for high performance supercapacitors.
Collapse
Affiliation(s)
- Yinan Yuan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | | | | | | | | | | |
Collapse
|
11
|
Boosted cycling stability of CoP nano-needles based hybrid supercapacitor with high energy density upon surface phosphorization. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Laohana P, Tanapongpisit N, Kim S, Eknapakul T, Fongkaew I, Supruangnet R, Nakajima H, Meevasana W, Bark CW, Saenrang W. Particle size dependence of the electrochemical properties of SrMnO3 supercapacitor electrodes. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-020-04879-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
A simple hydrothermal method for the preparation of 3D petal-like Ni(OH)2/g-C3N4/RGO composite with good supercapacitor performance. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Sun P, Wang L, Zhang J, Huang J, Wang P, Hou J, Zhang J, Li C, Yao Z, Yang Y, Xiong J. Metal-organic frameworks derived copper doped cobalt phosphide nanosheet arrays with boosted electrochemical performance for hybrid supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Wu W, Xia P, Xuan Y, Yang R, Chen M, Jiang D. Hierarchical CoO@Ni(OH) 2 core-shell heterostructure arrays for advanced asymmetric supercapacitors. NANOTECHNOLOGY 2020; 31:405705. [PMID: 32503008 DOI: 10.1088/1361-6528/ab99f2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing multicomponent electrode materials with a rational structure is an effective route to develop high-performance supercapacitors. We herein report a novel nickel-foam-supported hierarchical CoO@Ni(OH)2 nanowire-nanosheet core-shell heterostructure array synthesized by a facile hydrothermal-electrodeposition strategy. The core CoO nanowire arrays with good electrical conductivity and shell Ni(OH)2 nanosheets with thickness of ∼ 2 nm synergistically contributes to increased active sites, fast mass transfer, and improved structural stability. Consequently, the optimal CoO@Ni(OH)2-400 s architecture delivers a high specific capacitance of 1418.2 F g-1 at 1 A g-1 and 93.7% retention after 5000 cycles. Furthermore, the CoO@Ni(OH)2//activated carbon asymmetric supercapacitor could achieve an outstanding energy density of up to 92.47 W h kg-1 at 800 W kg-1. This simple but effective strategy provides insight into the development of core-shell hierarchical architectures for constructing high-performance supercapacitors.
Collapse
Affiliation(s)
- Wen Wu
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Gu TH, Kwon NH, Lee KG, Jin X, Hwang SJ. 2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213439] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Hussain I, Lamiel C, Qin N, Gu S, Li Y, Wu S, Huang X, Zhang K. Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications. J Colloid Interface Sci 2020; 582:782-792. [PMID: 32911420 DOI: 10.1016/j.jcis.2020.08.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023]
Abstract
Direct growth of nanostructured trimetallic oxide on substrate is considered as one of the promising electrode fabrication for high-performance hybrid supercapacitors. Herein, binder-free one-dimensional grass-like nanostructure was constructed on nickel foam by using electrodeposition approach. The admirable enhancement in rate capability was observed by the substitution of Mg and Ni in cobalt oxide crystallite. The prepared nickel cobalt oxide (NCO) and cobalt oxide (CO) electrode exhibited a rate capability of 57% and 58% (2 to 10 A g-1) respectively. Interestingly, the rate capability was increased to 87% by the substitution of Mg and Ni simultaneously. The novel vertically aligned trimetallic Mg-Ni-Co oxide (MNCO) grass-like nanostructure electrode exhibited a high specific capacity of 846 C g-1 at 2 A g-1, retained 97.3% specific capacity and showed an outstanding coulombic efficiency of 99% after 10,000 charge-discharge cycles. Moreover, we assembled hybrid supercapacitor (HSC) device for practical applications by using MNCO and activated carbon (AC) as the positive and negative electrode materials, respectively. HSC device exhibited a high specific capacity of 144 C g-1 at 0.5 A g-1. The high energy density of 31.5 Wh kg-1 and the power density of 7.99 kW kg-1 were achieved. All these interesting and attractive results demonstrate the significance of the vertically aligned electrode material towards practical applications.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Charmaine Lamiel
- School of Chemical Engineering, University of Queensland, Australia
| | - Ning Qin
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Shuai Gu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Yuxiang Li
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Shuilin Wu
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Xiaona Huang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Qin Z, Wang Y, Huang X, Shen W, Yu J, Li J. A Facile Synthesis of Three Dimensional β-Ni(OH)2 Composed of Ultrathin Nanosheets for High Performance Pseudocapacitor. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01360-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Xuan H, Guan Y, Han X, Liang X, Xie Z, Han P, Wu Y. Hierarchical MnCo-LDH/rGO@NiCo2S4 heterostructures on Ni foam with enhanced electrochemical properties for battery-supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135691] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Xing H, Long G, Zheng J, Zhao H, Zong Y, Li X, Wang Y, Zhu X, Zhang M, Zheng X. Interface engineering boosts electrochemical performance by fabricating CeO2@CoP Schottky conjunction for hybrid supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135817] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Liang H, Lin T, Wang S, Jia H, Li C, Cao J, Feng J, Fei W, Qi J. A free-standing manganese cobalt sulfide@cobalt nickel layered double hydroxide core-shell heterostructure for an asymmetric supercapacitor. Dalton Trans 2019; 49:196-202. [PMID: 31807736 DOI: 10.1039/c9dt03974k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational design of self-supported electrode materials is important to develop high-performance supercapacitors. Herein, a free-standing MnCo2S4@CoNi LDH (MCS@CN LDH) core-shell heterostructure is successfully prepared on Ni foam using the hydrothermal reaction and electrodeposition. In this architecture, the inner MnCo2S4 nanotube provides an ultra-high electrical conductivity and the CoNi LDH nanosheets can offer more electrochemical active sites for better faradaic reactions. Moreover, the core-shell heterostructure can also maintain the structural integrity during the processes of continuous charge/discharge. The MCS@CN LDH electrode displays a satisfactory specific capacitance of 1206 C g-1 and excellent cycling performance with ∼92% retention after 10 000 cycles. In addition, an asymmetric supercapacitor (ASC), in which MCS@CN LDH and N-doped rGO are used as the positive electrode and the negative electrode, was assembled which exhibits an energy density of 48.8 W h kg-1 with superior cycling stability, indicating the potential of this electrode in practical energy storage.
Collapse
Affiliation(s)
- Haoyan Liang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang L, Yuan YF, Chen Q, Zheng YQ, Yin SM, Guo SY. Construction of Co 3O 4 three-dimensional mesoporous framework structures from zeolitic imidazolate framework-67 with enhanced lithium storage properties. NANOTECHNOLOGY 2019; 30:435402. [PMID: 31300617 DOI: 10.1088/1361-6528/ab31ec] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-porosity mesoporous framework structures are attractive for electrochemical energy storage and other applications. Herein we demonstrate a novel synthesis strategy to make zeolitic imidazolate framework-67 oxidize to a Co3O4 three-dimensional mesoporous framework structure. This strategy relies on the oxygen-limitation effect of the closed nanocage and the affinity effect of polyvinylpyrrolidone towards zeolitic imidazolate framework-67. Several TiO2 nanospheres, as the unique structure junctions, are uniformly embedded within the Co3O4 framework to enhance the framework strength. The TiO2/hydrous titania polyhedron nanocage, as the protecting shell, further encapsulates the Co3O4 framework, forming a perfect capsule-type hybrid. As anode materials for lithium-ion batteries, TiO2@Co3O4 framework capsules show superior lithium storage performance with high reversible capacity, stable cycling life and good rate capability. A reversible capacity of 1042 mAh g-1 can be delivered after 200 cycles at a current density of 300 mA g-1. The average discharge capacity over 200 cycles reaches 926 mAh g-1. This demonstrates the superiority of this material structure and its great potential as an anode for high-performance lithium-ion batteries. This work indicates a new strategy to take advantage of metal-organic frameworks to synthesize their mesoporous framework derivatives.
Collapse
Affiliation(s)
- L Wang
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Li G, Cai H, Li X, Zhang J, Zhang D, Yang Y, Xiong J. Construction of Hierarchical NiCo 2O 4@Ni-MOF Hybrid Arrays on Carbon Cloth as Superior Battery-Type Electrodes for Flexible Solid-State Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37675-37684. [PMID: 31532185 DOI: 10.1021/acsami.9b11994] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) have been considered as a class of promising electrode materials for supercapacitors owing to their large surface area, rich porosity, and variable redox sites; however, direct application of pristine MOFs in energy storage has been largely hindered by their poor electrical conductivity and stability issues. In this work, we demonstrate a facile two-step approach to address the controlled growth of Ni-MOF arrays on the surface of NiCo2O4 nanowires by modulating the formation reaction of MOFs. By taking advantage of the intriguing merits from the NiCo2O4 core and Ni-MOF shell as well as their synergistic effects, the optimized NiCo2O4@Ni-MOF hybrid electrode exhibits boosted electrochemical performance, in terms of high specific capacity (208.8 mA h/g at 2 mA/cm2) and good rate capability. In addition, the assembled flexible solid-state HSC device based on the optimized NiCo2O4@Ni-MOF and activated carbon as the cathode and anode achieves a maximum energy density of 32.6 W h/kg at a power density of 348.9 W/kg without sacrificing its outstanding cycling performance (nearly 100% retention over 6000 cycles at 8 mA/cm2) and mechanical stability, outperforming most recently reported MOF-based HSC devices in an aqueous electrolyte. Our work demonstrates the possibility of exploiting novel MOF-based hybrid arrays as battery-type electrodes with enhanced electrochemical properties, which exhibits great potential in flexible energy storage devices.
Collapse
Affiliation(s)
| | | | | | | | - Desuo Zhang
- College of Textile and Clothing Engineering , Soochow University , Suzhou 215123 , China
| | | | | |
Collapse
|
24
|
Huang Y, Ge S, Chen X, Xiang Z, Zhang X, Zhang R, Cui Y. Hierarchical FeCo
2
S
4
@FeNi
2
S
4
Core/Shell Nanostructures on Ni Foam for High‐Performance Supercapacitors. Chemistry 2019; 25:14117-14122. [DOI: 10.1002/chem.201902868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yunxia Huang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Shuaipeng Ge
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Xiaojuan Chen
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Zhongcheng Xiang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Xinran Zhang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Ruoxuan Zhang
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| | - Yimin Cui
- Key Laboratory of Micro-nano Measurement, Manipulation and Physics, Ministry of EducationDepartment of PhysicsBeihang University Beijing 100191 P. R. China
| |
Collapse
|
25
|
Functional molecules regulated and intercalated nickel-cobalt LDH nano-sheets on carbon fiber cloths as an advanced free-standing electrode for high-performance asymmetric supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134708] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Yan AL, Wang WD, Chen WQ, Wang XC, Liu F, Cheng JP. The Synthesis of NiCo 2O 4-MnO 2 Core-Shell Nanowires by Electrodeposition and Its Supercapacitive Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1398. [PMID: 31581488 PMCID: PMC6835400 DOI: 10.3390/nano9101398] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 11/28/2022]
Abstract
Hierarchical composite films grown on current collectors are popularly reported to be directly used as electrodes for supercapacitors. Highly dense and conductive NiCo2O4 nanowires are ideal backbones to support guest materials. In this work, low crystalline MnO2 nanoflakes are electrodeposited onto the surface of NiCo2O4 nanowire films pre-coated on nickel foam. Each building block in the composite films is a NiCo2O4-MnO2 core-shell nanowire on conductive nickel foam. Due to the co-presence of MnO2 and NiCo2O4, the MnO2@NiCo2O4@Ni electrode exhibits higher specific capacitance and larger working voltage than the NiCo2O4@Ni electrode. It can have a high specific capacitance of 1186 F·g-1 at 1 A·g-1. When the core-shell NiCo2O4-MnO2 composite and activated carbon are assembled as a hybrid capacitor, it has the highest energy density of 29.6 Wh·kg-1 at a power density of 425 W·kg-1 with an operating voltage of 1.7 V. This work shows readers an easy method to synthesize composite films for energy storage.
Collapse
Affiliation(s)
- Ai-Lan Yan
- College of Water Resources and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.
| | - Wei-Dong Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Wen-Qiang Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xin-Chang Wang
- Key Laboratory of Material Physics of Ministry of Education, Zhengzhou University, Zhengzhou 450052, China.
| | - Fu Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ji-Peng Cheng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
27
|
Wu Y, Yuan Y, Xiang J, Yin S, Guo S. NiCo2O4 doubled-shelled nanocages with enhanced lithium storage properties. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Pourfarzad H, Shabani-Nooshabadi M, Ganjali MR, Kashani H. Synthesis of Ni–Co-Fe layered double hydroxide and Fe2O3/Graphene nanocomposites as actively materials for high electrochemical performance supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.122] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Affiliation(s)
- Tao Chen
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| | - Shaoting Wei
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids Ministry of Education College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| |
Collapse
|
30
|
Benzoic acid-assisted substrate-free synthesis of ultrathin nanosheets assembled two-dimensional porous Co3O4 thin sheets with 3D hierarchical micro-/nano-structures and enhanced performance as battery-type materials for supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Sun X, Sun X, Zhou S, Luo G, Liu R, Li S, Li A, Zhu X. Designed Construction of Hierarchical CuCo
2
S
4
@Co(OH)
2
Core‐Shell Nanoarrays as Electrode Materials for High‐Performance Supercapacitors. ChemistrySelect 2019. [DOI: 10.1002/slct.201803976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xueying Sun
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Xiulun Sun
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Sicheng Zhou
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Guang Luo
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Rongmei Liu
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Siqi Li
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Anran Li
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Xiandong Zhu
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| |
Collapse
|
32
|
Shi X, Key J, Ji S, Linkov V, Liu F, Wang H, Gai H, Wang R. Ni(OH) 2 Nanoflakes Supported on 3D Ni 3 Se 2 Nanowire Array as Highly Efficient Electrodes for Asymmetric Supercapacitor and Ni/MH Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1802861. [PMID: 30474305 DOI: 10.1002/smll.201802861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Porous Ni(OH)2 nanoflakes are directly grown on the surface of nickel foam supported Ni3 Se2 nanowire arrays using an in situ growth procedure to form 3D Ni3 Se2 @Ni(OH)2 hybrid material. Owing to good conductivity of Ni3 Se2 , high specific capacitance of Ni(OH)2 and its unique architecture, the obtained Ni3 Se2 @Ni(OH)2 exhibits a high specific capacitance of 1689 µAh cm-2 (281.5 mAh g-1 ) at a discharge current of 3 mA cm-2 and a superior rate capability. Both the high energy density of 59.47 Wh kg-1 at a power density of 100.54 W kg-1 and remarkable cycling stability with only a 16.4% capacity loss after 10 000 cycles are demonstrated in an asymmetric supercapacitor cell comprising Ni3 Se2 @Ni(OH)2 as a positive electrode and activated carbon as a negative electrode. Furthermore, the cell achieved a high energy density of 50.9 Wh L-1 at a power density of 83.62 W L-1 in combination with an extraordinary coulombic efficiency of 97% and an energy efficiency of 88.36% at 5 mA cm-2 when activated carbon is replaced by metal hydride from a commercial NiMH battery. Excellent electrochemical performance indicates that Ni3 Se2 @Ni(OH)2 composite can become a promising electrode material for energy storage applications.
Collapse
Affiliation(s)
- Xin Shi
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Julian Key
- College of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Shan Ji
- College of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Vladimir Linkov
- South African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town, 7535, South Africa
| | - Fusheng Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hengjun Gai
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
33
|
Hou Y, Chai D, Li B, Pang H, Ma H, Wang X, Tan L. Polyoxometalate-Incorporated Metallacalixarene@Graphene Composite Electrodes for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20845-20853. [PMID: 31117450 DOI: 10.1021/acsami.9b04649] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Composites of polyoxometalate (POM)/metallacalixarene/graphene-based electrode materials not only integrate the superiority of the individual components perfectly but also ameliorate the demerits to some extent, providing a promising route to approach high-performance supercapacitors. Herein, first, we report the preparations, structures, and electrochemical performance of two fascinating POM-incorporated metallacalixarene compounds [Ag5(C2H2N3)6][H5 ⊂ SiMo12O40] (1) and [Ag5(C2H2N3)6][H5 ⊂ SiW12O40] (2); (C2H2N3 = 1 H-1,2,4-triazole). Single-crystal X-ray diffraction analyses illustrated that both 1 and 2 possess intriguing POM-sandwiched metallacalix[6]arene frameworks. Nevertheless, our investigations, including the electrochemical cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy, reveal that the oxidation ability of the Keggin ions is a primary effect in electrochemical performance of these POM-incorporated metallacalixarene compounds. Namely, the electrodes containing Mo as metal atoms in the Keggin POM shows much higher capacitance than the corresponding W-containing ones. Moreover, compound 1@graphene oxide (GO) composite electrodes are fabricated and systematically explored for their supercapacitor performance. Thanks to the synergetic effects of GO and POM-incorporated metallacalixarenes, the compound 1@15%GO-based electrode exhibits the highest specific capacitance of up to 230.2 F g-1 (current density equal to 0.5 A g-1), which is superior to majority of the reported POM-based electrode materials.
Collapse
Affiliation(s)
- Yan Hou
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Dongfeng Chai
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Bonan Li
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Haijun Pang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Huiyuan Ma
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Xinming Wang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Lichao Tan
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| |
Collapse
|
34
|
Wang Y, Yin Z, Li X, Guo H, Zhang D, Wang Z. Smartly tailored Co(OH)2-Ni(OH)2 heterostucture on nickel foam as binder-free electrode for high-energy hybrid capacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Yuan Y, Ye L, Zhang D, Chen F, Zhu M, Wang L, Yin S, Cai G, Guo S. NiCo2S4 multi-shelled hollow polyhedrons as high-performance anode materials for lithium-ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Lin J, Yan Y, Zheng X, Zhong Z, Wang Y, Qi J, Cao J, Fei W, Huang Y, Feng J. Designing and constructing core-shell NiCo2S4@Ni3S2 on Ni foam by facile one-step strategy as advanced battery-type electrodes for supercapattery. J Colloid Interface Sci 2019; 536:456-462. [DOI: 10.1016/j.jcis.2018.10.072] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
|
37
|
Wang Y, Yin Z, Wang Z, Li X, Guo H, Wang J, Zhang D. Facile construction of Co(OH)2@Ni(OH)2 core-shell nanosheets on nickel foam as three dimensional free-standing electrode for supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Naveenkumar P, Kalaignan GP. Electrodeposited Ni(OH) 2-modified CuS core–shell-like hybrids as binder-free electrodes for high-performance supercapacitors. NEW J CHEM 2019. [DOI: 10.1039/c9nj03593a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, binder-free electrodes of CuS@Ni(OH)2 were fabricated by hydrothermal and electrodeposition methods.
Collapse
Affiliation(s)
- P. Naveenkumar
- Department of Industrial Chemistry
- Alagappa University
- Karaikudi-630 003
- India
| | | |
Collapse
|
39
|
Xie J, Yang Y, Li G, Xia H, Wang P, Sun P, Li X, Cai H, Xiong J. One-step sulfuration synthesis of hierarchical NiCo2S4@NiCo2S4 nanotube/nanosheet arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors. RSC Adv 2019; 9:3041-3049. [PMID: 35518986 PMCID: PMC9059951 DOI: 10.1039/c8ra10435b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/12/2019] [Indexed: 11/21/2022] Open
Abstract
To obtain high-performance hybrid supercapacitors (HSCs), a new class of battery-type electrode materials with hierarchical core/shell structure, high conductivity and rich porosity are needed. Herein, we propose a facile one-step sulfuration approach to achieve the fabrication of hierarchical NiCo2S4@NiCo2S4 hybrid nanotube/nanosheet arrays (NTSAs) on carbon cloth, by taking hydrothermally grown Ni–Co precursor@Ni–Co precursor nanowire/nanosheet arrays (NWSAs) as the starting templates. The optimized electrode of NiCo2S4@NiCo2S4 hybrid NTSAs demonstrates an enhanced areal capacity of 245 μA h cm−2 at 2 mA cm−2 with outstanding rate capability (73% from 2 to 20 mA cm−2) and cycling stability (86% at 10 mA cm−2 over 3000 cycles). In addition, flexible solid-state HSC devices are assembled by using NiCo2S4@NiCo2S4 hybrid NTSAs and activated carbon as the positive and negative electrodes, respectively, which manifest a maximum volumetric energy density of 1.03 mW h cm−3 at a power density of 11.4 mW cm−3, with excellent cycling stability. Our work indicates the feasibility of designing and fabricating core/shell structured metal sulfides through such a facile one-step sulfuration process and the great potential of these materials as advanced electrodes for high-performance HSC devices. One-step sulfuration synthesis of NiCo2S4@NiCo2S4 core–shell arrays on carbon cloth.![]()
Collapse
Affiliation(s)
- Jinlei Xie
- Department of Materials Engineering
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Yefeng Yang
- Department of Materials Engineering
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Geng Li
- Department of Materials Engineering
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Hanchun Xia
- Department of Materials Engineering
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Peijia Wang
- Department of Materials Engineering
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Peiheng Sun
- Department of Materials Engineering
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Xiaolong Li
- Department of Materials Engineering
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Haoran Cai
- Department of Materials Engineering
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| | - Jie Xiong
- Department of Materials Engineering
- College of Materials and Textiles
- Zhejiang Sci-Tech University
- Hangzhou 310018
- P. R. China
| |
Collapse
|
40
|
Xu Q, Xia P, Xu Y, Jiang D, Chen M. Hierarchical urchin-like Co9S8@Ni(OH)2 heterostructures with superior electrochemical performance for hybrid supercapacitors. NEW J CHEM 2019. [DOI: 10.1039/c9nj01255a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hierarchical core–shell heterostructure of Co9S8@Ni(OH)2 with high open channels enables rapid electrolyte diffusion, thus enhancing the electrochemical performance.
Collapse
Affiliation(s)
- Qing Xu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Ping Xia
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yuyan Xu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Min Chen
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
41
|
Wang P, Cai H, Li X, Yang Y, Li G, Xie J, Xia H, Sun P, Zhang D, Xiong J. Construction of hierarchical NiCo2S4 nanotube@NiMoO4 nanosheet hybrid arrays as advanced battery-type electrodes for hybrid supercapacitors. NEW J CHEM 2019. [DOI: 10.1039/c9nj00110g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hierarchical NiCo2S4@NiMoO4 nanotube/nanosheet arrays were successfully fabricated on Ni foam as battery-type electrodes for high-performance hybrid supercapacitors.
Collapse
|
42
|
Zheng D, Li M, Li Y, Qin C, Wang Y, Wang Z. A Ni(OH) 2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:281-293. [PMID: 30746322 PMCID: PMC6350860 DOI: 10.3762/bjnano.10.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/09/2019] [Indexed: 05/09/2023]
Abstract
Developing a facile and environmentally friendly approach to the synthesis of nanostructured Ni(OH)2 electrodes for high-performance supercapacitor applications is a great challenge. In this work, we report an extremely simple route to prepare a Ni(OH)2 nanopetals network by immersing Ni nanofoam in water. A binder-free composite electrode, consisting of Ni(OH)2 nanopetals network, Ni nanofoam interlayer and Ni-based metallic glass matrix (Ni(OH)2/Ni-NF/MG) with sandwich structure and good flexibility, was designed and finally achieved. Microstructure and morphology of the Ni(OH)2 nanopetals were characterized. It is found that the Ni(OH)2 nanopetals interweave with each other and grow vertically on the surface of Ni nanofoam to form an "ion reservoir", which facilitates the ion diffusion in the electrode reaction. Electrochemical measurements show that the Ni(OH)2/Ni-NF/MG electrode, after immersion in water for seven days, reveals a high volumetric capacitance of 966.4 F/cm3 at a current density of 0.5 A/cm3. The electrode immersed for five days exhibits an excellent cycling stability (83.7% of the initial capacity after 3000 cycles at a current density of 1 A/cm3). Furthermore, symmetric supercapacitor (SC) devices were assembled using ribbons immersed for seven days and showed a maximum volumetric energy density of ca. 32.7 mWh/cm3 at a power density of 0.8 W/cm3, and of 13.7 mWh/cm3 when the power density was increased to 2 W/cm3. The fully charged SC devices could light up a red LED. The work provides a new idea for the synthesis of nanostructured Ni(OH)2 by a simple approach and ultra-low cost, which largely extends the prospect of commercial application in flexible or wearable devices.
Collapse
Affiliation(s)
- Donghui Zheng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Man Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yongyan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chunling Qin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yichao Wang
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Zhifeng Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
43
|
Xia H, Li G, Cai H, Li X, Sun P, Wang P, Huang J, Wang L, Zhang D, Yang Y, Xiong J. Interlaced NiMn-LDH nanosheet decorated NiCo2O4 nanowire arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors. Dalton Trans 2019; 48:12168-12176. [DOI: 10.1039/c9dt02227a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D hierarchical NiCo2O4@NiMn-LDH nanowire/nanosheet arrays have been successfully fabricated on carbon cloth as superior battery-type electrode for high-performance flexible solid-state HSC devices.
Collapse
|
44
|
Chen C, Zhou JJ, Li YL, Li Q, Chen HM, Tao K, Han L. NiCo2S4@Ni3S2 hybrid nanoarray on Ni foam for high-performance supercapacitors. NEW J CHEM 2019. [DOI: 10.1039/c9nj01384a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrated hybrid nanoarrays with hierarchical porous structures have attracted much attention as energy materials for their excellent synergistic effects.
Collapse
Affiliation(s)
- Chen Chen
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Jiao-Jiao Zhou
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Yan-Li Li
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Qin Li
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Hong-Mei Chen
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Kai Tao
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
| | - Lei Han
- School of Materials Science & Chemical Engineering
- Ningbo University
- Ningbo
- China
- Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province
| |
Collapse
|
45
|
Niu H, Zhang Y, Liu Y, Xin N, Shi W. NiCo-layered double-hydroxide and carbon nanosheets microarray derived from MOFs for high performance hybrid supercapacitors. J Colloid Interface Sci 2018; 539:545-552. [PMID: 30611050 DOI: 10.1016/j.jcis.2018.12.095] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
Exploring porous nano-structured materials has great significance for energy storage equipment. The metal-organic frameworks (MOFs) can be used as the outstanding sacrificial templates for electrode material of high performance supercapacitors due to their superior features that high specific surface area and tunable pore size distribution. However, the poor conductivity of MOFs is one of the biggest barriers to achieve high rate capacity and stable cycling performance. Herein, MOFs derived NiCo-layered double-hydroxide (NiCo-LDH) and nitrogen-doped carbon nanosheets (NC) on the flexible carbon nanotubes (CNTs) film are rationally designed, both of which as the binder-free electrodes can greatly improve the specific surface area and reaction sites. An asymmetric supercapacitor based on porous NiCo-LDH nanosheets on CNTs (CNT@NiCo-LDH) as the positive electrode and the NC nanosheets on carbon nanotubes film (CNT@NC) as the negative electrode exhibits the maximum energy density of 37.4 W h/kg at the power density of 750 W/kg, as well as a long-term cycling stability (94.5% capacity retention after 5000 cycles). Rationally design such combination is a meaningful process for energy storage equipment with excellent electrochemical performance.
Collapse
Affiliation(s)
- Haoting Niu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Na Xin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
46
|
Zhang M, Wang G, Lu L, Wang T, Xu H, Yu C, Li H, Tian W. Improving the electrochemical performances of active carbon-based supercapacitors through the combination of introducing functional groups and using redox additive electrolyte. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Zou W, Guo W, Liu X, Luo Y, Ye Q, Xu X, Wang F. Anion Exchange of Ni-Co Layered Double Hydroxide (LDH) Nanoarrays for a High-Capacitance Supercapacitor Electrode: A Comparison of Alkali Anion Exchange and Sulfuration. Chemistry 2018; 24:19309-19316. [PMID: 30326158 DOI: 10.1002/chem.201804218] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/30/2018] [Indexed: 11/11/2022]
Abstract
A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO3 2- and OH- results in the construction of a reservoir for OH- anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as-soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm-2 (684 F g-1 ) to 6.22 F cm-2 (2391 F g-1 ) at 2 mA cm-2 after soaking for 12 h. Moreover, the soaked NiCo-OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni-Co-S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as-assembled all-solid-state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg-1 at a power density of 1066 W kg-1 .
Collapse
Affiliation(s)
- Wenru Zou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Wenxin Guo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Xinyi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Yunli Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Qinglan Ye
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Xuetang Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Fan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China.,Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning, P.R. China
| |
Collapse
|
48
|
Mixed Nickel-Cobalt-Molybdenum Metal Oxide Nanosheet Arrays for Hybrid Supercapacitor Applications. COATINGS 2018. [DOI: 10.3390/coatings8100340] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mixed metal oxide nanomaterials have been demonstrated to be promising positive electrodes for energy storage applications because of the synergistic enhancement effects. In this work, nickel-cobalt-molybdenum metal oxide (NCMO) nanosheets with hierarchical, porous structures were directly developed on nickel foam (NF) through a hydrothermal method and ensuing annealing treatment. Electrochemical tests in three-electrode configurations revealed that the as-prepared NCMO nanosheets possessed high specific capacitance (1366 F g−1 at the current density of 2 A g−1), good rate capability (71.3% at the current density of 40 A g−1), as well as excellent cycling stability (89.75% retention after 5000 cycles). Additionally, a hybrid supercapacitor was assembled and achieved an energy density of 46.2 Wh kg−1 at a power density of 713 W kg−1. Based on the systematic analysis of microstructure, morphology, and element compositions, the excellent electrochemical performance of the NCMO nanosheets could be attributed to the mesoporous feature, desirable compositions, excellent mechanical and electrical contacts, and fast ion/electron transportation rates. This study shows that the NCMO nanosheets offer great potentials for application in supercapacitors.
Collapse
|
49
|
Wei X, Peng H, Li Y, Yang Y, Xiao S, Peng L, Zhang Y, Xiao P. In Situ Growth of Zeolitic Imidazolate Framework-67-derived Nanoporous Carbon@K 0.5 Mn 2 O 4 for High-Performance 2.4 V Aqueous Asymmetric Supercapacitors. CHEMSUSCHEM 2018; 11:3167-3174. [PMID: 30019855 DOI: 10.1002/cssc.201801439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/16/2018] [Indexed: 05/14/2023]
Abstract
Aqueous asymmetric supercapacitors (ASCs) with a wide voltage window can effectively improve energy storage capacity of energy storage devices. Zeolitic imidazolate framework-67 (ZIF-67) was used as a precursor to prepare nanoporous carbon (NC), and K0.5 Mn2 O4 nanosheets were subsequently grown on the NC surface through a facile in situ redox process (denoted as NCMO). The electrode potential window of NCMO was extended to 1.2 V in a three-electrode system and the value of the potential window was higher than that of most reported manganese oxides. To assemble the asymmetric supercapacitor with a high voltage range, the as-prepared NCMO and NC (with a potential window of -1.2-0 V) were used as the positive and negative electrode, respectively. A 2.4 V NCMO//NC aqueous ASC was constructed and displayed a large energy density of 60 Wh kg-1 at a power density of 1200 W kg-1 and excellent rate performance (41 Wh kg-1 even at a specific power density of 12.3 kW kg-1 ) as well as good cycling stability (92.6 % capacitance retention over 10 000 cycles at 10 A g-1 ). This work provides new opportunities for the development of high voltage ASCs with a high energy density for further practical application.
Collapse
Affiliation(s)
- Xijun Wei
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Huarong Peng
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Yanhong Li
- College of Physics, Chongqing University, Chongqing, 400044, China
| | - Yibin Yang
- College of Physics, Chongqing University, Chongqing, 400044, China
| | - Shenghuan Xiao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Li Peng
- College of Physics, Chongqing University, Chongqing, 400044, China
| | - Yunhuai Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Peng Xiao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
- College of Physics, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
50
|
Huang Y, Cheng M, Xiang Z, cui Y. Facile synthesis of NiCo 2S 4/CNTs nanocomposites for high-performance supercapacitors. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180953. [PMID: 30839698 PMCID: PMC6170541 DOI: 10.1098/rsos.180953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/15/2018] [Indexed: 06/09/2023]
Abstract
Herein, porous NiCo2S4/CNTs nanocomposites were synthesized via a simple hydrothermal method followed by the sulphurization process using different sulfide sources. By comparing two different sulfur sources, the samples using thioacetamide as sulfide source delivered more remarkable electrochemical performance with a high specific capacitance of 1765 F g-1 at 1 A g-1 and an admirable cycling stability with capacitance retention of 71.7% at a high current density of 10 A g-1 after 5000 cycles in 2 M KOH aqueous electrolyte. Furthermore, an asymmetric supercapacitor (ASC) device was successfully fabricated with the NiCo2S4/CNTs electrode as the positive electrode and graphene as the negative electrode. The device provided a maximum energy density of 29.44 W h kg-1 at a power density of 812 W kg-1. Even at a high power density of 8006 W kg-1, the energy density still reaches 16.68 W h kg-1. Moreover, the ASC presents 89.8% specific capacitance retention after 5000 cycles at 5 A g-1. These results reveal its great potential for supercapacitors in electrochemical energy storage field.
Collapse
Affiliation(s)
| | | | | | - Yimin cui
- Department of Physics, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|