1
|
Shi L, Chen M, Zhao G, Wang X, Fan M, Liu R, Xie F. Environmental Applications of Electromembrane Extraction: A Review. MEMBRANES 2023; 13:705. [PMID: 37623766 PMCID: PMC10456692 DOI: 10.3390/membranes13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Electromembrane extraction (EME) is a miniaturized extraction technique that has been widely used in recent years for the analysis and removal of pollutants in the environment. It is based on electrokinetic migration across a supported liquid membrane (SLM) under the influence of an external electrical field between two aqueous compartments. Based on the features of the SLM and the electrical field, EME offers quick extraction, effective sample clean-up, and good selectivity, and limits the amount of organic solvent used per sample to a few microliters. In this paper, the basic devices (membrane materials and types of organic solvents) and influencing factors of EME are first introduced, and the applications of EME in the analysis and removal of environmental inorganic ions and organic pollutants are systematically reviewed. An outlook on the future development of EME for environmental applications is also given.
Collapse
Affiliation(s)
- Linping Shi
- College of Chemistry, Zhengzhou University, Science Avenue #100, Zhengzhou 450001, China;
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Mantang Chen
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Ge Zhao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Xiaoyu Wang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Meijuan Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Ruihong Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| |
Collapse
|
2
|
Pinto JJ, Mendiguchía C, López-López JA, Martín-Barata M, Silva M, Moreno C. Improvement of Advanced Sample Preparation Systems for the Determination of Trace Ni in Seawater by Electro-Membranes. MEMBRANES 2023; 13:152. [PMID: 36837655 PMCID: PMC9966385 DOI: 10.3390/membranes13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Due to its important environmental role, the analysis of trace metals in natural waters is attracting increasing attention; consequently, faster and more accurate analytical methods are now needed to reach even lower limits of detection. In this work, we propose the use of electro-membrane extraction (EME) to improve analytical methods based on hollow fiber liquid phase micro-extraction (HFLPME). Specifically, an EME-based method for the determination of trace Ni in seawater has been developed, using an HFLPME system with di-2-ethylhexyl phosphoric acid (DEHPA) in kerosene as a chemical carrier, followed by instrumental determination by graphite furnace atomic absorption spectroscopy (GFAAS). Under optimum conditions, Ni was pre-concentrated 180 ± 17 times after 15 min, using sample pH = 5.5, the concentration of DEHPA 0.9 M in the liquid membranes, and 1.9 M HNO3 in the acceptor solution, as well as an electric potential of 25 V with the sample being stirred at 500 rpm. When compared with other HFLPME systems for pre-concentration of trace Ni in seawater in the absence of electric potential, the enrichment factor was improved 2.2 times, while the time of extraction was reduced an 89%. The limit of detection of the new method was 23.3 ng L-1, and both its applicability and accuracy were successfully evaluated by analyzing Ni concentration in a seawater-certified reference material (BCR-403), showing the reliability of EME for sample preparation in the determination of trace metals in marine water samples.
Collapse
|
3
|
Sahragard A, Varanusupakul P, Miró M. Interfacing liquid-phase microextraction with electrochemical detection: A critical review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Charlton van der Horst, Vernon Somerset. Nanoparticles Application in the Determination of Uric Acid, Ascorbic Acid, and Dopamine. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s102319352205010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Hu H, Xie B, Lu Y, Zhu J. Advances in Electrochemical Detection Electrodes for As(III). NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:781. [PMID: 35269271 PMCID: PMC8912440 DOI: 10.3390/nano12050781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
Arsenic is extremely abundant in the Earth's crust and is one of the most common environmental pollutants in nature. In the natural water environment and surface soil, arsenic exists mainly in the form of trivalent arsenite (As(III)) and pentavalent arsenate (As(V)) ions, and its toxicity can be a serious threat to human health. In order to manage the increasingly serious arsenic pollution in the living environment and maintain a healthy and beautiful ecosystem for human beings, it is urgent to conduct research on an efficient sensing method suitable for the detection of As(III) ions. Electrochemical sensing has the advantages of simple instrumentation, high sensitivity, good selectivity, portability, and the ability to be analyzed on site. This paper reviews various electrode systems developed in recent years based on nanomaterials such as noble metals, bimetals, other metals and their compounds, carbon nano, and biomolecules, with a focus on electrodes modified with noble metal and metal compound nanomaterials, and evaluates their performance for the detection of arsenic. They have great potential for achieving the rapid detection of arsenic due to their excellent sensitivity and strong interference immunity. In addition, this paper discusses the relatively rare application of silicon and its compounds as well as novel polymers in achieving arsenic detection, which provides new ideas for investigating novel nanomaterial sensing. We hope that this review will further advance the research progress of high-performance arsenic sensors based on novel nanomaterials.
Collapse
Affiliation(s)
- Haibing Hu
- Academy of Opto-Electric Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Collaborative Innovation Center of Advanced Display Technology, Anhui Key Laboratory of Advanced Imaging and Display Technology, Opto-Electric Display Industry Innovation Center, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (Y.L.)
| | - Baozhu Xie
- Academy of Opto-Electric Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Collaborative Innovation Center of Advanced Display Technology, Anhui Key Laboratory of Advanced Imaging and Display Technology, Opto-Electric Display Industry Innovation Center, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (Y.L.)
| | - Yangtian Lu
- Academy of Opto-Electric Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Collaborative Innovation Center of Advanced Display Technology, Anhui Key Laboratory of Advanced Imaging and Display Technology, Opto-Electric Display Industry Innovation Center, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (Y.L.)
| | - Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
The Ultra-sensitive Electrochemical Detection of As(III) in Ground Water Using Disposable L-cysteine/Lipoic Acid Functionalised Gold Nanoparticle Modified Screen-Printed Electrodes. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00658-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Ultra-selective, trace level detection of As3+ ions in blood samples using PANI coated BiVO4 modified SPCE via differential pulse anode stripping voltammetry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110806. [DOI: 10.1016/j.msec.2020.110806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023]
|
8
|
Farajmand B, Kamyabi MA, Sorkhani FY, Jam HS, Bahrami H. Combination of micro liquid-liquid extraction with differential pulse voltammetry for determination of TBHQ in edible oil samples by pre-anodized glassy carbon electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Aghaei A, Erfani Jazi M, E Mlsna T, Kamyabi MA. A novel method for the preconcentration and determination of ampicillin using electromembrane microextraction followed by high‐performance liquid chromatography. J Sep Sci 2019; 42:3002-3008. [DOI: 10.1002/jssc.201900016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ali Aghaei
- Department of ChemistryFaculty of ScienceUniversity of Zanjan Zanjan Iran
| | - Mehdi Erfani Jazi
- Department of ChemistryMississippi State University Mississippi MS USA
| | - Todd E Mlsna
- Department of ChemistryMississippi State University Mississippi MS USA
| | | |
Collapse
|
10
|
Di H, Zhu X. Use of Ionic liquids as additives in ion exchange chromatography for the analysis of cations. J Sep Sci 2017; 40:4113-4119. [DOI: 10.1002/jssc.201700408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/18/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Huawei Di
- College of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou P.R. China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou P.R. China
| |
Collapse
|