1
|
Horsfall AJ, McDougal DP, Scanlon DB, Bruning JB, Abell AD. Approaches to Introduce Helical Structure in Cysteine-Containing Peptides with a Bimane Group. Chembiochem 2021; 22:2711-2720. [PMID: 34107164 DOI: 10.1002/cbic.202100241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Indexed: 01/01/2023]
Abstract
An i-i+4 or i-i+3 bimane-containing linker was introduced into a peptide known to target Estrogen Receptor alpha (ERα), in order to stabilise an α-helical geometry. These macrocycles were studied by CD and NMR to reveal the i-i+4 constrained peptide adopts a 310 -helical structure in solution, and an α-helical conformation on interaction with the ERα coactivator recruitment surface in silico. An acyclic bimane-modified peptide is also helical, when it includes a tryptophan or tyrosine residue; but is significantly less helical with a phenylalanine or alanine residue, which indicates such a bimane modification influences peptide structure in a sequence dependent manner. The fluorescence intensity of the bimane appears influenced by peptide conformation, where helical peptides displayed a fluorescence increase when TFE was added to phosphate buffer, compared to a decrease for less helical peptides. This study presents the bimane as a useful modification to influence peptide structure as an acyclic peptide modification, or as a side-chain constraint to give a macrocycle.
Collapse
Affiliation(s)
- Aimee J Horsfall
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia.,Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.,The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia
| | - Daniel P McDougal
- The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Denis B Scanlon
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.,The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia.,Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.,The Institute for Photonics & Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Guo C, Yu J, Horsley JR, Sheves M, Cahen D, Abell AD. Backbone-Constrained Peptides: Temperature and Secondary Structure Affect Solid-State Electron Transport. J Phys Chem B 2019; 123:10951-10958. [PMID: 31777245 DOI: 10.1021/acs.jpcb.9b07753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary sequence and secondary structure of a peptide are crucial to charge migration, not only in solution (electron transfer, ET), but also in the solid-state (electron transport, ETp). Hence, understanding the charge migration mechanisms is fundamental to the development of biomolecular devices and sensors. We report studies on four Aib-containing helical peptide analogues: two acyclic linear peptides with one and two electron-rich alkene-based side chains, respectively, and two peptides that are further rigidified into a macrocycle by a side bridge constraint, containing one or no alkene. ETp was investigated across Au/peptide/Au junctions, between 80 and 340 K in combination with the molecular dynamic (MD) simulations. The results reveal that the helical structure of the peptide and electron-rich side chain both facilitate the ETp. As temperature increases, the loss of helical structure, change of monolayer tilt angle, and increase of thermally activated fluctuations affect the conductance of peptides. Specifically, room temperature conductance across the peptide monolayers correlates well with previously observed ET rate constants, where an interplay between backbone rigidity and electron-rich side chains was revealed. Our findings provide new means to manipulate electronic transport across solid-state peptide junctions.
Collapse
Affiliation(s)
- Cunlan Guo
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - John R Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Mordechai Sheves
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - David Cahen
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| |
Collapse
|
3
|
Schosser WM, Zotti LA, Cuevas JC, Pauly F. Doping hepta-alanine with tryptophan: A theoretical study of its effect on the electrical conductance of peptide-based single-molecule junctions. J Chem Phys 2019; 150:174705. [PMID: 31067872 DOI: 10.1063/1.5090457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Motivated by a recent experiment [C. Guo et al., Proc. Natl. Acad. Sci. U. S. A. 113, 10785 (2016)], we carry out a theoretical study of electron transport through peptide-based single-molecule junctions. We analyze the pristine hepta-alanine and its functionalizations with a single tryptophan unit, which is placed in three different locations along the backbone. Contrary to expectations from the experiment on self-assembled monolayers, we find that insertion of tryptophan does not raise the electrical conductance and that the resulting peptides instead remain insulating in the framework of a coherent transport picture. The poor performance of these molecules as conductors can be ascribed to the strongly off-resonant transport and low electrode-molecule coupling of the frontier orbitals. Although the introduction of tryptophan increases the energy of the highest occupied molecular orbital (HOMO) of the peptides in the gas phase, the new HOMO states are localized on the tryptophan unit and therefore essentially do not contribute to coherent charge transport.
Collapse
Affiliation(s)
- Werner M Schosser
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Linda A Zotti
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Carlos Cuevas
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fabian Pauly
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
4
|
Yu J, Horsley JR, Abell AD. Peptides as Bio-Inspired Electronic Materials: An Electrochemical and First-Principles Perspective. Acc Chem Res 2018; 51:2237-2246. [PMID: 30192512 DOI: 10.1021/acs.accounts.8b00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecular electronics is at the forefront of interdisciplinary research, offering a significant extension of the capabilities of conventional silicon-based technology as well as providing a possible stand-alone alternative. Bio-inspired molecular electronics is a particularly intriguing paradigm, as charge transfer in proteins/peptides, for example, plays a critical role in the energy storage and conversion processes for all living organisms. However, the structure and conformation of even the simplest protein is extremely complex, and therefore, synthetic model peptides comprising well-defined geometry and predetermined functionality are ideal platforms to mimic nature for the elucidation of fundamental biological processes while also enhancing the design and development of single-peptide electronic components. In this Account, we first present intramolecular electron transfer within two synthetic peptides, one with a well-defined helical conformation and the other with a random geometry, using electrochemical techniques and computational simulations. This study reveals two definitive electron transfer pathways (mechanisms), the natures of which are dependent on secondary structure. Following on from this, electron transfer within a series of well-defined helical peptides, constrained by either Huisgen cycloaddition, ring-closing metathesis, or a lactam bridge, was determined. The electrochemical results indicate that each constrained peptide, in contrast to a linear counterpart, exhibits a remarkable shift of the formal potential to the positive (>460 mV) and a significant reduction of the electron transfer rate constant (up to 15-fold), which represent two distinct electronic "on/off" states. High-level calculations demonstrate that the additional backbone rigidity provided by the side-bridge constraints leads to an increased reorganization energy barrier, which impedes the vibrational fluctuations necessary for efficient intramolecular electron transfer through the peptide backbone. Further calculations reveal a clear mechanistic transition from hopping to superexchange (tunneling) stemming from side-bridge gating. We then extended our research to fine-tuning of the electronic properties of peptides through both structural and chemical manipulation, to reveal an interplay between electron-rich side chains and backbone rigidity on electron transfer. Further to this, we explored the possibility that the side-bridge constraints present in our synthetic peptides provide an additional electronic transport pathway, which led to the discovery of two distinct forms of quantum interferometer. The effects of destructive quantum interference appear essentially through both the backbone and an alternative tunneling pathway provided by the side bridge in the constrained β-strand peptide, as evidenced by a correlation between electrochemical measurements and conductance simulations for both linear and constrained β-strand peptides. In contrast, an interplay between quantum interference effects and vibrational fluctuations is revealed in the linear and constrained 310-helical peptides. Collectively, these exciting findings augment our fundamental knowledge of charge transfer dynamics and kinetics in peptides and also open up new avenues to design and develop functional bio-inspired electronic devices, such as on/off switches and quantum interferometers, for practical applications in molecular electronics.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Zotti LA, Cuevas JC. Electron Transport Through Homopeptides: Are They Really Good Conductors? ACS OMEGA 2018; 3:3778-3785. [PMID: 31458620 PMCID: PMC6641635 DOI: 10.1021/acsomega.7b01917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/26/2018] [Indexed: 06/10/2023]
Abstract
Motivated by recent experiments, we performed a theoretical study of electron transport through single-molecule junctions incorporating four kinds of homopeptides (based on alanine, glutamic acid, lysine, and tryptophan). Our results suggest that these molecules are rather insulating and operate in off-resonance tunneling as their main transport mechanism. We ascribe their poor performance as conductors to the high localization of their frontier orbitals. We found that binding scenarios in which side chains lie on the side of gold protuberances could give rise to an increase in conductance with respect to end-to-end binding configurations. These findings provide an insight into the conductance mechanism of the building blocks of proteins and identify key issues that need to be further investigated.
Collapse
Affiliation(s)
- Linda A. Zotti
- Departamento
de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Ciudad Universitaria
de Cantoblanco, E-28049 Madrid, Spain
| | - Juan Carlos Cuevas
- Departamento
de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Ciudad Universitaria
de Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
6
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Peptides as Bio-inspired Molecular Electronic Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29081052 DOI: 10.1007/978-3-319-66095-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Understanding the electronic properties of single peptides is not only of fundamental importance to biology, but it is also pivotal to the realization of bio-inspired molecular electronic materials. Natural proteins have evolved to promote electron transfer in many crucial biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here we highlight the importance of secondary structure characteristic to proteins/peptides, and its relevance to electron transfer. The proposed mechanisms responsible for such transfer are discussed, as are details of the electrochemical techniques used to investigate their electronic properties. Several factors that have been shown to influence electron transfer in peptides are also considered. Finally, a comprehensive experimental and theoretical study demonstrates that the electron transfer kinetics of peptides can be successfully fine tuned through manipulation of chemical composition and backbone rigidity. The methods used to characterize the conformation of all peptides synthesized throughout the study are outlined, along with the various approaches used to further constrain the peptides into their geometric conformations. The aforementioned sheds light on the potential of peptides to one day play an important role in the fledgling field of molecular electronics.
Collapse
|