1
|
Wu H, Zhao Y, Wang J, Li X, Shih K, Li X, Liu W. Production of the C/TiO 2 composite with a high-performance electrochemical property from titanium-rich sludge via in-situ C coating. J Environ Sci (China) 2024; 137:131-143. [PMID: 37980002 DOI: 10.1016/j.jes.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 11/20/2023]
Abstract
Resource recycling from waste-water and sludge is an important part of the 14th Five-Year Plan in China. The emerging titanium-based coagulants have drawn growing attentions due to their strong coagulation capability in water purification and value-added Ti-loaded sludge production. Management and recovery of the high value-added sludge into functional nanomaterials is highly significant for both sludge reduction and environmental remediation. The present study was carried out to investigate the recycle of the coagulated Ti-loaded sludge to produce functional C/TiO2 composites as the anode materials for lithium-ion batteries (LIBs). It is the first time that the application of the Ti-loaded wastewater sludge derived C/TiO2 was evaluated for LIBs. The experimental results showed that the carbon coating through in-situ carbonization of the sludge produced the C/TiO2 composites with a high specific surface area, stable structural integrity, and excellent electrochemical properties that would facilitate Li+ diffusion in long-term LIBs usage. The C/TiO2 composites calcinated from the polytitanium sulfate-coagulated sludge at 800°C (N2) exhibited the best electrochemical performance during the cycling tests (601 mAh/g at 100 mA/g after 200 cycles). The research work demonstrates the promising prospect of the recycle and value-added utilization of the Ti-loaded sludge in the production of high-performance C/TiO2 composites for energy storage applications. This study provides a new way for the management and reuse of Ti-loaded waste-sludge.
Collapse
Affiliation(s)
- Hualong Wu
- State Key Lab of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Jiexi Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xuguang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wei Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
2
|
Mi C, Luo C, Wang Z, Zhang Y, Yang S, Wang Z. Cu and Ni Co-Doped Porous Si Nanowire Networks as High-Performance Anode Materials for Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6980. [PMID: 37959577 PMCID: PMC10650621 DOI: 10.3390/ma16216980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Due to its extremely high theoretical mass specific capacity, silicon is considered to be the most promising anode material for lithium-ion batteries (LIBs). However, serious volume expansion and poor conductivity limit its commercial application. Herein, dealloying treatments of spray dryed Al-Si-Cu-Ni particles are performed to obtain a Cu/Ni co-doped Si-based anode material with a porous nanowire network structure. The porous structure enables the material to adapt to the volume changes in the cycle process. Moreover, the density functional theory (DFT) calculations show that the co-doping of Cu and Ni can improve the capture ability towards Li, which can accelerate the electron migration rate of the material. Based on the above advantages, the as-prepared material presents excellent electrochemical performance, delivering a reversible capacity of 1092.4 mAh g-1 after 100 cycles at 100 mA g-1. Even after 500 cycles, it still retains 818.7 mAh g-1 at 500 mA g-1. This study is expected to provide ideas for the preparation and optimization of Si-based anodes with good electrochemical performance.
Collapse
Affiliation(s)
- Can Mi
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
- Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300401, China
- Collaborative Innovation Center for Vehicle Lightweighting, Hebei University of Technology, Tianjin 300401, China
| | - Chang Luo
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zigang Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yongguang Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shenbo Yang
- Hongzhiwei Technology (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Zhifeng Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
- Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300401, China
- Collaborative Innovation Center for Vehicle Lightweighting, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Chen K, Tan Y, Gao Y, Chen YY, Chen K, Tan PY, Gao Y, Chen Y. Carbon-coated SiOx/TiO2 composite nanospheres with conductive TiO2 nanocrystals as anode materials for lithium-ion batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
High specific capacity of carbon coating lemon-like SiO2 hollow spheres for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Kurmanbayeva I, Mentbayeva A, Nurpeissova A, Bakenov Z. Advanced Battery Materials Research at Nazarbayev University: Review. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2021. [DOI: 10.18321/ectj1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
With the rapid development of new and advanced technologies, the request for energy storage device with better electrochemical characteristics is increasing as well. Therefore, the search and development for more novel and efficient energy storage components are imperative. In Kazakhstan there are several groups that were established to conduct research in the field of energy storage devices. One of them is professor Mansurov’s research group with we have a long time fruitful collaboration. Group at Nazarbayev University do research in design and investigation of advanced energy storage materials for high performance energy storage devices, including lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, and aqueous rechargeable batteries, employing strategies as nanostructuring, nano/micro combination, hybridization, pore-structure control, configuration design, 3D printing, surface modification, and composition optimization. This manuscript reviews research on advanced battery materials, provided by Nazarbayev University scientists since the last 10 years.
Collapse
|
6
|
Study of the Role of Void and Residual Silicon Dioxide on the Electrochemical Performance of Silicon Nanoparticles Encapsulated by Graphene. NANOMATERIALS 2021; 11:nano11112864. [PMID: 34835629 PMCID: PMC8622490 DOI: 10.3390/nano11112864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Silicon nanoparticles are used to enhance the anode specific capacity for the lithium-ion cell technology. Due to the mechanical deficiencies of silicon during lithiation and delithiation, one of the many strategies that have been proposed consists of enwrapping the silicon nanoparticles with graphene and creating a void area between them so as to accommodate the large volume changes that occur in the silicon nanoparticle. This work aims to investigate the electrochemical performance and the associated kinetics of the hollow outer shell nanoparticles. To this end, we prepared hollow outer shell silicon nanoparticles (nps) enwrapped with graphene by using thermally grown silicon dioxide as a sacrificial layer, ball milling to enwrap silicon particles with graphene and hydro fluorine (HF) to etch the sacrificial SiO2 layer. In addition, in order to offer a wider vision on the electrochemical behavior of the hollow outer shell Si nps, we also prepared all the possible in-between process stages of nps and corresponding electrodes (i.e., bare Si nps, bare Si nps enwrapped with graphene, Si/SiO2 nps and Si/SiO2 nps enwrapped with graphene). The morphology of all particles revealed the existence of graphene encapsulation, void, and a residual layer of silicon dioxide depending on the process of each nanoparticle. Corresponding electrodes were prepared and studied in half cell configurations by means of galvanostatic cycling, cyclic voltammetry and electrochemical impedance spectroscopy. It was observed that nanoparticles encapsulated with graphene demonstrated high specific capacity but limited cycle life. In contrast, nanoparticles with void and/or SiO2 were able to deliver improved cycle life. It is suggested that the existence of the void and/or residual SiO2 layer limits the formation of rich LiXSi alloys in the core silicon nanoparticle, providing higher mechanical stability during the lithiation and delithiation processes.
Collapse
|
7
|
Xing T, Yun S, Li B, Wang K, Chen J, Jia B, Ke T, An J. Coconut-shell-derived bio-based carbon enhanced microbial electrolysis cells for upgrading anaerobic co-digestion of cow manure and aloe peel waste. BIORESOURCE TECHNOLOGY 2021; 338:125520. [PMID: 34284294 DOI: 10.1016/j.biortech.2021.125520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Microbial electrolysis cells (MECs) and exogenous accelerants can augment anaerobic digestion performance. Herein, MECs and coconut-shell-derived bio-based carbon (CBC) accelerant are adopted to strengthen anaerobic co-digestion of cow manure and aloe peel waste. The MEC with the voltage of 0.6 V and CBC accelerant of 0.15 wt.% gained the highest cumulative biogas yield (444.20 NmL/g VS) and chemical oxygen demand removal rate (75.46%), which are 80.25% and 58.33% higher than those (246.44 NmL/g VS, 47.66%) of the blank group, respectively. The digestates embodied a utilization potential with thermogravimetric loss of 37.12%-50.67% and total nutrient content of 35.36-51.58 g/kg. These results benefited from excellent electrocatalytic activity of MECs and physicochemical properties of CBC accelerant. A general strategy for understanding improved methanogenesis was proposed based on integrated effects of MECs and CBC accelerant. This work will shed light on development of anaerobic co-digestion by combining MECs and bio-based carbon accelerants.
Collapse
Affiliation(s)
- Tian Xing
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Bingjie Li
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiageng Chen
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Bo Jia
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Teng Ke
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jinhang An
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
8
|
Ansari Hamedani A, Ow‐Yang CW, Hayat Soytas S. Mechanisms of Si Nanoparticle Formation by Molten Salt Magnesiothermic Reduction of Silica for Lithium‐ion Battery Anodes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ali Ansari Hamedani
- Faculty of Engineering and Natural Sciences Sabanci University, Orhanli Tuzla Istanbul 34956 Turkey
| | - Cleva W. Ow‐Yang
- Sabanci University SUNUM Nanotechnology Research and Application Center, Orhanli Tuzla Istanbul 34956 Turkey
- Faculty of Engineering and Natural Sciences Sabanci University, Orhanli Tuzla Istanbul 34956 Turkey
| | - Serap Hayat Soytas
- Sabanci University SUNUM Nanotechnology Research and Application Center, Orhanli Tuzla Istanbul 34956 Turkey
| |
Collapse
|
9
|
Nulu A, Nulu V, Moon JS, Sohn KY. Unified NCNT@rGO bounded porous silicon composite as an anode material for Lithium-ion batteries. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0813-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Wu P, Chen S, Liu A. The influence of contact engineering on silicon‐based anode for li‐ion batteries. NANO SELECT 2020. [DOI: 10.1002/nano.202000174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Pengfei Wu
- Key Laboratory of High‐Performance Ceramic Fibers of Ministry of Education College of Materials Xiamen University Xiamen 361005 China
- Fujian Key Laboratory of Advanced Materials Xiamen University Xiamen 361005 China
| | - Shaohong Chen
- Key Laboratory of High‐Performance Ceramic Fibers of Ministry of Education College of Materials Xiamen University Xiamen 361005 China
- Fujian Key Laboratory of Advanced Materials Xiamen University Xiamen 361005 China
| | - Anhua Liu
- Key Laboratory of High‐Performance Ceramic Fibers of Ministry of Education College of Materials Xiamen University Xiamen 361005 China
- Fujian Key Laboratory of Advanced Materials Xiamen University Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518000 China
| |
Collapse
|
11
|
Ashuri M, He Q, Liu Y, Shaw LL. Investigation towards scalable processing of silicon/graphite nanocomposite anodes with good cycle stability and specific capacity. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ashuri M, He Q, Shaw LL. Improving cycle stability of Si anode through partially carbonized polydopamine coating. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Wei Q, Liu GC, Zhang C, Hong XJ, Song CL, Yang Y, Zhang M, Huang W, Cai YP. Novel honeycomb silicon wrapped in reduced graphene oxide/CNT system as high-stability anodes for lithium-ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Sekar S, Aqueel Ahmed AT, Inamdar AI, Lee Y, Im H, Kim DY, Lee S. Activated Carbon-Decorated Spherical Silicon Nanocrystal Composites Synchronously-Derived from Rice Husks for Anodic Source of Lithium-Ion Battery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1055. [PMID: 31340552 PMCID: PMC6669463 DOI: 10.3390/nano9071055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/07/2023]
Abstract
The nanocomposites of activated-carbon-decorated silicon nanocrystals (ACAC) were synchronously derived in a single step from biomass rice husks, through the simple route of the calcination method together with the magnesiothermic reduction process. The final product, ACAC, exhibited an aggregated structure of activated-carbon-encapsulated nanocrystalline silicon spheres, and reveals a high specific surface area (498.5 m2/g). Owing to the mutualization of advantages from both silicon nanocrystals (i.e., low discharge potential and high specific capacity) and activated carbon (i.e., high porosity and good electrical conductivity), the ACAC nanocomposites are able to play a substantial role as an anodic source material for the lithium-ion battery (LIB). Namely, a high coulombic efficiency (97.5%), a high discharge capacity (716 mAh/g), and a high reversible specific capacity (429 mAh/g after 100 cycles) were accomplished when using ACAC as an LIB anode. The results advocate that the simultaneous synthesis of biomass-derived ACAC is beneficial for green energy-storage device applications.
Collapse
Affiliation(s)
- Sankar Sekar
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Korea
| | | | - Akbar I Inamdar
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea
| | - Youngmin Lee
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Korea
| | - Hyunsik Im
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Korea
| | - Deuk Young Kim
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Korea
| | - Sejoon Lee
- Department of Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea.
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04620, Korea.
| |
Collapse
|
15
|
Chen H, He S, Hou X, Wang S, Chen F, Qin H, Xia Y, Zhou G. Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.170] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Xu T, Wang Q, Zhang J, Xie X, Xia B. Green Synthesis of Dual Carbon Conductive Network-Encapsulated Hollow SiO x Spheres for Superior Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19959-19967. [PMID: 31090391 DOI: 10.1021/acsami.9b03070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Designing hollow/porous structure is regarded as an effective approach to address the dramatic volumetric variation issue for Si-based anode materials in Li-ion batteries (LIBs). Pioneer studies mainly focused on acid/alkali etching to create hollow/porous structures, which are, however, highly corrosive and may lead to a complicated synthetic process. In this paper, a dual carbon conductive network-encapsulated hollow SiO x (DC-HSiO x) is fabricated through a green route, where polyacrylic acid is adopted as an eco-friendly soft template. Low electrical resistance and integrated electrode structure can be maintained during cycles because of the dual carbon conductive networks distributed both on the surface of single particles formed by amorphous carbon and among particles constructed by reduced graphene oxide. Importantly, the hollow space is reserved within SiO x spheres to accommodate the huge volumetric variation and shorten the transport pathway of Li+ ions. As a result, the DC-HSiO x composite delivers a large reversible capacity of 1113 mA h g-1 at 0.1 A g-1, an excellent cycling performance up to 300 cycles with a capacity retention of 92.5% at 0.5 A g-1, and a good rate capability. Furthermore, the DC-HSiO x//LiNi0.8Co0.1Mn0.1O2 full cell exhibits high energy density (419 W h kg-1) and superior cycling performance. These results render an opportunity for the unique DC-HSiO x composite as a potential anode material for use in high-performance LIBs.
Collapse
Affiliation(s)
- Tao Xu
- Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qian Wang
- School of Physical and Mathematical Sciences , Nanjing Tech University , Nanjing 211800 , China
| | - Jian Zhang
- Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Xiaohua Xie
- Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Baojia Xia
- Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
| |
Collapse
|
17
|
Soares SF, Fernandes T, Daniel-da-Silva AL, Trindade T. The controlled synthesis of complex hollow nanostructures and prospective applications †. Proc Math Phys Eng Sci 2019; 475:20180677. [PMID: 31105450 PMCID: PMC6501658 DOI: 10.1098/rspa.2018.0677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Functionality in nanoengineered materials has been usually explored on structural and chemical compositional aspects of matter that exist in such solid materials. It is well known that the absence of solid matter is also relevant and the existence of voids confined in the nanostructure of certain particles is no exception. Indeed, over the past decades, there has been great interest in exploring hollow nanostructured materials that besides the properties recognized in the dense particles also provide empty spaces, in the sense of condensed matter absence, as an additional functionality to be explored. As such, the chemical synthesis of hollow nanostructures has been driven not only for tailoring the size and shape of particles with well-defined chemical composition, but also to achieve control on the type of hollowness that characterize such materials. This review describes the state of the art on late developments concerning the chemical synthesis of hollow nanostructures, providing a number of examples of materials obtained by distinct strategies. It will be apparent by reading this progress report that the absence of solid matter determines the functionality of hollow nanomaterials for several technological applications.
Collapse
Affiliation(s)
- Sofia F Soares
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| | - Tiago Fernandes
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| |
Collapse
|
18
|
Jangid MK, Sinha S, Lakhnot AS, Sonia FJ, Kumar A, Dusane RO, Mukhopadhyay A. Effect of the presence of Si-oxide/sub-oxide surface layer(s) on ‘micron-sized’ Si wires towards the electrochemical behavior as anode material for Li-ion battery. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Liu S, Wei W, He X. Indium Phosphide/Reduced Graphene Oxide Composites as High-Performance Anodes in Lithium-Ion Batteries. ChemElectroChem 2018. [DOI: 10.1002/celc.201800660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuling Liu
- College of Chemistry & Chemical Engineering; Shaanxi University of Science and Technology; Xi'an 710021 China
- Shaanxi Key Laboratory of Chemical Additives for Industry; Shaanxi University of Science and Technology; Xi'an 710021 China
| | - Wei Wei
- College of Chemistry & Chemical Engineering; Shaanxi University of Science and Technology; Xi'an 710021 China
- Shaanxi Key Laboratory of Chemical Additives for Industry; Shaanxi University of Science and Technology; Xi'an 710021 China
| | - Xiaodong He
- College of Chemistry & Chemical Engineering; Shaanxi University of Science and Technology; Xi'an 710021 China
- Shaanxi Key Laboratory of Chemical Additives for Industry; Shaanxi University of Science and Technology; Xi'an 710021 China
| |
Collapse
|
20
|
Zhang F, Wan L, Chen J, Li X, Yan X. Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.111] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Liu X, Zhu X, Pan D. Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172370. [PMID: 30110426 PMCID: PMC6030270 DOI: 10.1098/rsos.172370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Lithium-ion batteries are widely used in various industries, such as portable electronic devices, mobile phones, new energy car batteries, etc., and show great potential for more demanding applications like electric vehicles. Among advanced anode materials applied to lithium-ion batteries, silicon-carbon anodes have been explored extensively due to their high capacity, good operation potential, environmental friendliness and high abundance. Silicon-carbon anodes have demonstrated great potential as an anode material for lithium-ion batteries because they have perfectly improved the problems that existed in silicon anodes, such as the particle pulverization, shedding and failures of electrochemical performance during lithiation and delithiation. However, there are still some problems, such as low first discharge efficiency, poor conductivity and poor cycling performance, which need to be improved. This paper mainly presents some methods for solving the existing problems of silicon-carbon anode materials through different perspectives.
Collapse
Affiliation(s)
- Xuyan Liu
- Authors for correspondence: Xuyan Liu e-mail:
| | | | - Deng Pan
- Authors for correspondence: Deng Pan e-mail:
| |
Collapse
|
22
|
Zhao X, An L, Sun J, Liang G. LiNi0.5Co0.2Mn0.3O2 hollow microspheres-synthesis, characterization and application as cathode materials for power lithium ion batteries. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Ashuri M, He Q, Liu Y, Emani S, Shaw LL. Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.10.198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Yao W, Chen J, Zhan L, Wang Y, Yang S. Two-Dimensional Porous Sandwich-Like C/Si-Graphene-Si/C Nanosheets for Superior Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39371-39379. [PMID: 28937731 DOI: 10.1021/acsami.7b11721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel two-dimensional porous sandwich-like Si/carbon nanosheet is designed and successfully fabricated as an anode for superior lithium storage, where a porous Si nanofilm grows on the two sides of reduced graphene oxide (rGO) and is then coated with a carbon layer (denoted as C/Si-rGO-Si/C). The coexistence of micropores and mesopores in C/Si-rGO-Si/C nanosheets offers a rapid Li+ diffusion rate, and the porous Si provides a short pathway for electric transportation. Meanwhile, the coated carbon layer not only can promote to form a stable SEI layer, but also can improve the electric conductivity of nanoscale Si coupled with rGO. Thus, the unique nanostructures offer the resultant C/Si-rGO-Si/C electrode with high reversible capacity (1187 mA h g-1 after 200 cycles at 0.2 A g-1), excellent cycle stability (894 mA h g-1 after 1000 cycles at 1 A g-1), and high rate capability (694 mA h g-1 at 5 A g-1, 447 mA h g-1 at 10 A g-1).
Collapse
Affiliation(s)
- Weiqi Yao
- State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Jie Chen
- State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Liang Zhan
- State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology , Shanghai 200237, China
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001, China
| | - Yanli Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory for Specially Functional Polymers and Related Technology of Ministry of Education, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Shubin Yang
- Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University , Beijing 100191, China
| |
Collapse
|
25
|
Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ion batteries. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|