1
|
Suprun EV, Khmeleva SA, Duskaev IF, Ptitsyn KG, Kurbatov LK, Shershov VE, Kuznetsova VE, Lapa SA, Chudinov AV, Radko SP. Combining recombinase polymerase amplification with tyrosine modified 2'-deoxyuridine-5'-triphosphate for direct voltammetric detection of double-stranded DNA: Application to potato pathogen Dickeya solani. Talanta 2024; 273:125841. [PMID: 38460421 DOI: 10.1016/j.talanta.2024.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture. The optimized procedure of square wave voltammetry allowed to reliably detect the product generated by RPA at 80 % substitution of dTTP by dUTP-Y1 (dsDNA-Y1) in microliter sample volumes on the surface of disposable carbon screen printed electrodes at the potential of about 0.6 V. The calibration curve for the amplicon detection was linear in coordinates 'Ip, A vs. Log (c, M)' within the 0.05-1 μM concentration range. The limit of detection for dsDNA-Y1 was estimated as 8 nM. The sensitivity of the established electrochemical approach allowed to detect amplicons generated in a single standard 50 μL RPA reaction after their purification with silica-coated magnetic beads. The overall detectability of D. solani with the suggested combination of RPA and voltammetric registration of dsDNA-Y1 can be as low as a few copies of bacterial genome per standard reaction. In total, amplification, purification, and electrochemical detection take about 120-150 min. Considering the potential of direct electrochemical analysis for miniaturization, as well as compliance with low-cost and low-power requirements, the findings provide grounds for future development of microfluidic devices integrating isothermal amplification, amplicon purification and detection based on the tyrosine modified nucleotide for the purpose of 'on-site' detection of various pathogens.
Collapse
Affiliation(s)
- Elena V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow, 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia.
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Insaf F Duskaev
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow, 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Konstantin G Ptitsyn
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Leonid K Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow, 119991, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow, 119121, Russia
| |
Collapse
|
2
|
Reyes Y, Adhikary A, Wnuk SF. Nitrogen-Centered Radicals Derived from Azidonucleosides. Molecules 2024; 29:2310. [PMID: 38792171 PMCID: PMC11124349 DOI: 10.3390/molecules29102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Azido-modified nucleosides have been extensively explored as substrates for click chemistry and the metabolic labeling of DNA and RNA. These compounds are also of interest as precursors for further synthetic elaboration and as therapeutic agents. This review discusses the chemistry of azidonucleosides related to the generation of nitrogen-centered radicals (NCRs) from the azido groups that are selectively inserted into the nucleoside frame along with the subsequent chemistry and biological implications of NCRs. For instance, the critical role of the sulfinylimine radical generated during inhibition of ribonucleotide reductases by 2'-azido-2'-deoxy pyrimidine nucleotides as well as the NCRs generated from azidonucleosides by radiation-produced (prehydrated and aqueous) electrons are discussed. Regio and stereoselectivity of incorporation of an azido group ("radical arm") into the frame of nucleoside and selective generation of NCRs under reductive conditions, which often produce the same radical species that are observed upon ionization events due to radiation and/or other oxidative conditions that are emphasized. NCRs generated from nucleoside-modified precursors other than azidonucleosides are also discussed but only with the direct relation to the same/similar NCRs derived from azidonucleosides.
Collapse
Affiliation(s)
- Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA;
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
3
|
Suprun EV, Khmeleva SA, Duskaev IF, Kurbatov LK, Kuznetsova VE, Shershov VE, Chudinov AV, Radko SP. Polymerase incorporation of 4-nitrophenyl modified 2'-deoxyuridine-5'-triphosphates into double-stranded DNA for direct electrochemical detection. J Pharm Biomed Anal 2024; 241:115977. [PMID: 38241909 DOI: 10.1016/j.jpba.2024.115977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Three novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.9 V (phosphate buffer, pH 7.4). The reduction peak currents of dUTP-N derivatives were found to increase with their molar concentrations. The dUTP-N3 with a double bond in the linker had the lowest reduction potential (about 100 mV less negative) among the derivatives studied. Further, dUTP-N nucleotides were tested as substrates in PCR and RPA to incorporate the electroactive labels into 90, 210, or 206 base pair long dsDNA amplicons. However, only a dUTP-N1 derivative with a shorter linker without the double bond demonstrated satisfactory compatibility with both PCR and RPA, though with a low reaction output of modified dsDNA amplicons (at 100% substitution of dTTP). The dsDNA amplicons produced by PCR with 85% substitution of dTTP by the dUTP-N1 in the reaction mixture were successfully detected by square wave voltammetry at micromolar concentrations at high square wave frequency.
Collapse
Affiliation(s)
- Elena V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia.
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Insaf F Duskaev
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Leonid K Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow 119991, Russia
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow 119991, Russia
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street, 32, Moscow 119991, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| |
Collapse
|
4
|
Suprun EV, Khmeleva SA, Bibik KV, Ptitsyn KG, Kurbatov LK, Radko SP. Polymerase incorporation of fluorescein or rhodamine modified 2'-deoxyuridine-5'-triphosphates into double-stranded DNA for direct electrochemical detection. J Pharm Biomed Anal 2023; 236:115737. [PMID: 37774487 DOI: 10.1016/j.jpba.2023.115737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The 2'-deoxyuridine-5'-triphosphates modified with fluorescein (dUTP-Fl) or rhodamine (dUTP-Rh) were tested as bearers of electroactive labels and as proper substrates for polymerases used in polymerase chain reaction (PCR) and isothermal recombinase polymerase amplification (RPA) with the aim of electrochemical detection of double-stranded DNA (dsDNA) amplification products. For this purpose, electrochemical behavior of free fluorescein and rhodamine as well as the modified nucleotides, dUTP-Fl and dUTP-Rh, was studied by cyclic (CV) and square wave (SWV) voltammetry on carbon screen printed electrodes. Both free fluorescein and dUTP-Fl underwent a two-step oxidation at the peak potentials (Ep) of 0.6-0.7 V and 0.8-0.9 V (phosphate buffer, pH 7.4). The reduction peaks of fluorescein and dUTP-Fl were registered between -0.9 V and -1 V, but they did not depend on concentration. The free rhodamine and dUTP-Rh have demonstrated the well-defined oxidation peaks at 0.8-0.9 V. In addition, the distinct reduction peaks at Ep between -0.8 V and -0.9 V were registered for both rhodamine and dUTP-Rh. The dUTP-Fl and dUTP-Rh were further tested as substrates to incorporate an electroactive label into 210 or 206 base pair long dsDNA amplicons generated either by PCR or RPA. Among two dUTP derivatives tested, dUTP-Fl revealed significantly better compatibility with PCR and RPA, producing the full-size amplicons at 50-90% substitution of dTTP in the reaction mixture. In the PCR, the best compromise between amplicon output and labeling was achieved at the dUTP-Fl : dTTP and dUTP-Rh : dTTP molar ratios of 70% : 30% and 20% : 80% in the PCR mixture, respectively, allowing the direct electrochemical detection of amplicons at micromolar concentrations. Alongside with fluorescence DNA assays, the fluorescein and rhodamine modified dUTP appear as promising electroactive labels to develop direct electrochemical DNA assays for detecting PCR and RPA products.
Collapse
Affiliation(s)
- Elena V Suprun
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia.
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Konstantin V Bibik
- Chemistry Faculty of M.V. Lomonosov Moscow State University, Lenin Hills, 1/3, Moscow 119991, Russia; Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Konstantin G Ptitsyn
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Leonid K Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| | - Sergey P Radko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10/8, Moscow 119121, Russia
| |
Collapse
|
5
|
Interfacial behaviour of oligodeoxynucleotides prone to G-quadruplex formation on negatively charged electrode surface monitored by electrochemical probes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Suprun EV, Khmeleva SA, Kutdusova GR, Ptitsyn KG, Kuznetsova VE, Lapa SA, Chudinov AV, Radko SP. Deoxyuridine triphosphates modified with tyrosine aromatic groups for direct electrochemical detection of double-stranded DNA products of isothermal recombinase polymerase amplification. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Fojt L, Fojta M. Adsorption and 2D condensation of 5-nitrocytosine at the hanging mercury drop electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Vosáhlová J, Koláčná L, Daňhel A, Fischer J, Balintová J, Hocek M, Schwarzová-Pecková K, Fojta M. Voltammetric and adsorption study of 4-nitrophenyl-triazole-labeled 2′-deoxycytidine and 7-deazaadenosine nucleosides at boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Daňhel A, Trošanová Z, Balintová J, Simonová A, Pospíšil L, Cvačka J, Hocek M, Fojta M. Electrochemical reduction of azidophenyl-deoxynucleoside conjugates at mercury surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Skalová Š, Navrátil T, Barek J, Vyskočil V. Voltammetric determination of sodium anthraquinone-2-sulfonate using silver solid amalgam electrodes. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-1926-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|